Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 21(9): 2596-2610, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331519

RESUMO

BACKGROUND: Light transmission aggregation (LTA) is used widely by the clinical and research communities. Although it is a gold standard, there is a lack of interlaboratory harmonization. OBJECTIVES: The primary objective was to assess whether sources of activators (mainly adenosine diphosphate [ADP], collagen, arachidonic acid, epinephrine, and thrombin receptor activating peptide6) and ristocetin contribute to poor LTA reproducibility. The secondary objective was to evaluate interindividual variability of results to appreciate the distribution of normal values and consequently better interpret pathologic results. METHODS: An international multicenter study involving 28 laboratories in which we compared LTA results obtained with center-specific activators and a comparator that we supplied. RESULTS: We report variability in the potency (P) of activators in comparison with the comparator. Thrombin receptor activating peptide 6 (P, 1.32-2.68), arachidonic acid (P, 0.87-1.43), and epinephrine (P, 0.97-1.34) showed the greatest variability. ADP (P, 1.04-1.20) and ristocetin (P, 0.98-1.07) were the most consistent. The data highlighted clear interindividual variability, notably for ADP and epinephrine. Four profiles of responses were observed with ADP from high-responders, intermediate-responders, and low-responders. A fifth profile corresponding to nonresponders (5% of the individuals) was observed with epinephrine. CONCLUSION: Based on these data, the establishment and adoption of simple standardization principles should mitigate variability due to activator sources. The observation of huge interindividual variability for certain concentrations of activators should lead to a cautious interpretation before reporting a result as abnormal. Confidence can be taken from the fact that difference between sources is not exacerbated in patients treated with antiplatelet agents.


Assuntos
Agregação Plaquetária , Ristocetina , Humanos , Ácido Araquidônico/farmacologia , Reprodutibilidade dos Testes , Difosfato de Adenosina/farmacologia , Testes de Função Plaquetária/métodos , Inibidores da Agregação Plaquetária/farmacologia , Epinefrina/farmacologia , Comunicação , Plaquetas
2.
SLAS Discov ; 24(2): 133-141, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30359161

RESUMO

Eleven-nineteen leukemia (ENL) contains an epigenetic reader domain (YEATS domain) that recognizes lysine acylation on histone 3 and facilitates transcription initiation and elongation through its interactions with the super elongation complex (SEC) and the histone methyl transferase DOT1L. Although it has been known for its role as a fusion protein in mixed lineage leukemia (MLL), overexpression of native ENL, and thus dysregulation of downstream genes in acute myeloid leukemia (AML), has recently been implicated as a driver of disease that is reliant on the epigenetic reader activity of the YEATS domain. We developed a peptide displacement assay (histone 3 tail with acylated lysine) and screened a small-molecule library totaling more than 24,000 compounds for their propensity to disrupt the YEATS domain-histone peptide binding. Among these, we identified a first-in-class dual inhibitor of ENL ( Kd = 745 ± 45 nM) and its paralog AF9 ( Kd = 523 ± 53 nM) and performed "SAR by catalog" with the aim of starting the development of a chemical probe for ENL.


Assuntos
Descoberta de Drogas , Fatores de Elongação da Transcrição/antagonistas & inibidores , Fatores de Elongação da Transcrição/química , Fenômenos Biofísicos , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Histonas/metabolismo , Humanos , Concentração Inibidora 50 , Peptídeos/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade
3.
Blood ; 129(26): 3407-3418, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28465343

RESUMO

Since their discovery, immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptors have been shown to inhibit signaling from immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors in almost all hematopoietic cells, including platelets. However, a growing body of evidence has emerged demonstrating that this is an oversimplification, and that ITIM-containing receptors are versatile regulators of platelet signal transduction, with functions beyond inhibiting ITAM-mediated platelet activation. PECAM-1 was the first ITIM-containing receptor identified in platelets and appeared to conform to the established model of ITIM-mediated attenuation of ITAM-driven activation. PECAM-1 was therefore widely accepted as a major negative regulator of platelet activation and thrombosis for many years, but more recent findings suggest a more complex role for this receptor, including the facilitation of αIIbß3-mediated platelet functions. Since the identification of PECAM-1, several other ITIM-containing platelet receptors have been discovered. These include G6b-B, a critical regulator of platelet reactivity and production, and the noncanonical ITIM-containing receptor TREM-like transcript-1, which is localized to α-granules in resting platelets, binds fibrinogen, and acts as a positive regulator of platelet activation. Despite structural similarities and shared binding partners, including the Src homology 2 domain-containing protein-tyrosine phosphatases Shp1 and Shp2, knockout and transgenic mouse models have revealed distinct phenotypes and nonredundant functions for each ITIM-containing receptor in the context of platelet homeostasis. These roles are likely influenced by receptor density, compartmentalization, and as-yet unknown binding partners. In this review, we discuss the diverse repertoire of ITIM-containing receptors in platelets, highlighting intriguing new functions, controversies, and future areas of investigation.


Assuntos
Motivo de Inibição do Imunorreceptor Baseado em Tirosina/fisiologia , Animais , Humanos , Motivo de Ativação do Imunorreceptor Baseado em Tirosina , Ativação Plaquetária , Inibidores da Agregação Plaquetária , Transdução de Sinais
4.
PLoS One ; 11(10): e0163006, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27716777

RESUMO

Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents.


Assuntos
Plaquetas/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Tiorredoxinas/farmacologia , Trombose/tratamento farmacológico , Benzotiazóis/farmacologia , Testes de Coagulação Sanguínea/métodos , Plaquetas/metabolismo , Dissulfetos/farmacologia , Humanos , Hidroquinonas/farmacologia , Imidazóis/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Testes de Função Plaquetária/métodos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores de Colágeno/metabolismo , Ristocetina/farmacologia , Trombose/metabolismo , Fator de von Willebrand/metabolismo
5.
PLoS One ; 7(11): e49543, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185356

RESUMO

Platelet activation is regulated by both positive and negative signals. G6B-b is an inhibitory platelet receptor with an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM). The molecular basis of inhibition by G6B-b is currently unknown but thought to involve the SH2 domain-containing tyrosine phosphatase SHP-1. Here we show that G6B-b also associates with SHP-2, as well as SHP-1, in human platelets. Using a number of biochemical approaches, we found these interactions to be direct and that the tandem SH2 domains of SHP-2 demonstrated a binding affinity for G6B-b 100-fold higher than that of SHP-1. It was also observed that while SHP-1 has an absolute requirement for phosphorylation at both motifs to bind, SHP-2 can associate with G6B-b when only one motif is phosphorylated, with the N-terminal SH2 domain and the ITIM being most important for the interaction. A number of other previously unreported SH2 domain-containing proteins, including Syk and PLCγ2, also demonstrated specificity for G6B-b phosphomotifs and may serve to explain the observation that G6B-b remains inhibitory in the absence of both SHP-1 and SHP-2. In addition, the presence of dual phosphorylated G6B-b in washed human platelets can reduce the EC(50) for both CRP and collagen.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 6/química , Receptores Imunológicos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biotinilação , Plaquetas/metabolismo , Células COS , Cricetinae , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dados de Sequência Molecular , Mutagênese , Peptídeos/química , Fosfolipase C gama/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteínas Tirosina Quinases/metabolismo , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Quinase Syk , Tirosina/química
6.
Biochem J ; 441(1): 435-42, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21967541

RESUMO

Platelets play a vital role in maintaining haemostasis. Human platelet activation depends on Ca2+ release, leading to cell activation, granule secretion and aggregation. NAADP (nicotinic acid-adenine dinucleotide phosphate) is a Ca2+-releasing second messenger that acts on acidic Ca2+ stores and is used by a number of mammalian systems. In human platelets, NAADP has been shown to release Ca2+ in permeabilized human platelets and contribute to thrombin-mediated platelet activation. In the present study, we have further characterized NAADP-mediated Ca2+ release in human platelets in response to both thrombin and the GPVI (glycoprotein VI)-specific agonist CRP (collagen-related peptide). Using a radioligand-binding assay, we reveal an NAADP-binding site in human platelets, indicative of a platelet NAADP receptor. We also found that NAADP releases loaded 45Ca2+ from intracellular stores and that total platelet Ca2+ release is inhibited by the proton ionophore nigericin. Ned-19, a novel cell-permeant NAADP receptor antagonist, competes for the NAADP-binding site in platelets and can inhibit both thrombin- and CRP-induced Ca2+ release in human platelets. Ned-19 has an inhibitory effect on platelet aggregation, secretion and spreading. In addition, Ned-19 extends the clotting time in whole-blood samples. We conclude that NAADP plays an important role in human platelet function. Furthermore, the development of Ned-19 as an NAADP receptor antagonist provides a potential avenue for platelet-targeted therapy and the regulation of thrombosis.


Assuntos
Plaquetas/metabolismo , NADP/análogos & derivados , Ativação Plaquetária/fisiologia , Plaquetas/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Carbolinas/farmacologia , Proteínas de Transporte/metabolismo , Humanos , NADP/metabolismo , Peptídeos/metabolismo , Piperazinas/farmacologia , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Trombina/farmacologia
7.
PLoS One ; 4(8): e6752, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19707596

RESUMO

BACKGROUND: Mammalian cardiac myocytes withdraw from the cell cycle during post-natal development, resulting in a non-proliferating, fully differentiated adult phenotype that is unable to repair damage to the myocardium, such as occurs following a myocardial infarction. We and others previously have shown that forced expression of certain cell cycle molecules in adult cardiac myocytes can promote cell cycle progression and division in these cells. The mitotic serine/threonine kinase, Polo-like kinase-1 (Plk1), is known to phosphorylate and activate a number of mitotic targets, including Cdc2/Cyclin B1, and to promote cell division. PRINCIPAL FINDINGS: The mammalian Plk family are all differentially regulated during the development of rat cardiac myocytes, with Plk1 showing the most dramatic decrease in both mRNA, protein and activity in the adult. We determined the potential of Plk1 to induce cell cycle progression and division in cultured rat cardiac myocytes. A persistent and progressive loss of Plk1 expression was observed during myocyte development that correlated with the withdrawal of adult rat cardiac myocytes from the cell cycle. Interestingly, when Plk1 was over-expressed in cardiac myocytes by adenovirus infection, it was not able to promote cell cycle progression, as determined by cell number and percent binucleation. CONCLUSIONS: We conclude that, in contrast to Cdc2/Cyclin B1 over-expression, the forced expression of Plk1 in adult cardiac myocytes is not sufficient to induce cell division and myocardial repair.


Assuntos
Proteínas de Ciclo Celular/genética , Divisão Celular/genética , Miocárdio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Animais , Sequência de Bases , Primers do DNA , Células HeLa , Humanos , Imuno-Histoquímica , Miocárdio/citologia , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Ratos , Quinase 1 Polo-Like
8.
J Mol Cell Cardiol ; 42(4): 706-21, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17362983

RESUMO

Cardiac repair following myocardial injury is restricted due to the limited proliferative potential of adult cardiomyocytes. The ability of mammalian cardiomyocytes to proliferate is lost shortly after birth as cardiomyocytes withdraw from the cell cycle and differentiate. We do not fully understand the molecular and cellular mechanisms that regulate this cell cycle withdrawal, although if we could it might lead to the discovery of novel therapeutic targets for improving cardiac repair following myocardial injury. For the last decade, researchers have investigated cardiomyocyte cell cycle control, commonly using transgenic mouse models or recombinant adenoviruses to manipulate cell cycle regulators in vivo or in vitro. This review discusses cardiomyocyte cell cycle regulation and summarises recent data from studies manipulating the expressions and activities of cell cycle regulators in cardiomyocytes. The validity of therapeutic strategies that aim to reinstate the proliferative potential of cardiomyocytes to improve myocardial repair following injury will be discussed.


Assuntos
Ciclo Celular , Cardiopatias/patologia , Cardiopatias/terapia , Miócitos Cardíacos/citologia , Animais , Diferenciação Celular , Proliferação de Células , Humanos , Miócitos Cardíacos/metabolismo , Regeneração , Células-Tronco/citologia , Células-Tronco/metabolismo
9.
J Biol Chem ; 278(24): 21388-94, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12682052

RESUMO

Growth of the post-natal mammalian heart occurs primarily by cardiac myocyte hypertrophy. Previously, we and others have shown that a partial re-activation of the cell cycle machinery occurs in myocytes undergoing hypertrophy such that cells progress through the G1/S transition. In this study, we have examined the regulation of the E2F family of transcription factors that are crucial for the G1/S phase transition during normal cardiac development and the development of myocyte hypertrophy in the rat. Thus, mRNA and protein levels of E2F-1, 3, and 4 and DP-1 and DP-2 were down-regulated during development to undetectable levels in adult myocytes. Interestingly, E2F-5 protein levels were substantially up-regulated during development. In contrast, an induction of E2F-1, 3, and 4 and the DP-1 protein was observed during the development of myocyte hypertrophy in neonatal myocytes treated with serum or phenylephrine, whereas the protein levels of E2F-5 were decreased with serum stimulation. E2F activity, as measured by a cyclin E promoter luciferase assay and E2F-DNA binding activity, increased significantly during the development of hypertrophy with serum and phenylephrine compared with non-stimulated cells. Inhibiting E2F activity with a specific peptide that blocks E2F-DP heterodimerization prevented the induction of hypertrophic markers (atrial natriuretic factor and brain natriuretic peptide) in response to serum and phenylephrine, reduced the increase in myocyte size, and inhibited protein synthesis in stimulated cells. Thus, we have shown that the inhibition of E2F function prevents the development of hypertrophy. Targeting E2F function might be a useful approach for treating diseases that cause pathophysiological hypertrophic growth.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Miocárdio/citologia , Miocárdio/patologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/fisiologia , Células 3T3 , Animais , Ciclina E/genética , Dimerização , Regulação para Baixo , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Fator de Transcrição E2F5 , Feminino , Citometria de Fluxo , Fase G1 , Hipertrofia , Hipertrofia Ventricular Esquerda , Immunoblotting , Luciferases/metabolismo , Camundongos , Peptídeos/química , Fenilefrina/farmacologia , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , RNA/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fase S , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA