Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(55): e202301410, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37402229

RESUMO

Polyfluorinated aromatic reagents readily react with thiolates via nucleophilic aromatic substitution (SN Ar) and provide excellent scaffolds for peptide cyclisation. Here we report a robust and versatile platform for peptide stapling and multicyclisation templated by 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, opening the door to the next generation of functional scaffolds for 3D peptide architectures. We demonstrate that stapling and multicyclisation occurs with a range of non-protected peptides under peptide-compatible conditions, exhibiting chemoselectivity and wide-applicability. Peptides containing two cysteine residues are readily stapled, and the remaining perfluoroaryl groups permit the introduction of a second peptide in a modular fashion to access bicyclic peptides. Similarly, peptides with more than two cysteine residues can afford multicyclic products containing up to three peptide 'loops'. Finally, we demonstrate that a porphyrin-templated stapled peptide containing the Skin Penetrating and Cell Entering (SPACE) peptide affords a skin cell penetrating conjugate with intrinsic fluorescence.


Assuntos
Cisteína , Porfirinas , Porfirinas/química , Peptídeos/química , Ciclização
2.
Chemistry ; 29(16): e202203017, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36550088

RESUMO

A method for measuring peptidylprolyl bond cis-trans conformational status in peptide models is described, using 4-fluorophenylalanine (4FPhe) as a distal reporter for 19 F NMR. The %cis-Pro population was measured for peptides of the general structure Ac-X-Pro-Z-Ala-Ala-4FPhe (X and Z are proteinogenic amino acids) at pH 7.4, and provided conformational populations consistent with literature values obtained by more complex methods. This approach was applied to probe the prolyl bond status in pentapeptide models of the intrinsically disordered C-terminal region of α-synuclein, which mirrored the preferences in the Ac-X-Pro-Z-Ala-4FPhe models. Advantageously, the 19 F reporter group does not need to be adjacent to or attached to proline to provide quantifiable signals and distal 4-fluorophenylalanines can be placed so as not to influence prolyl bond conformation. Finally, we demonstrated that the prolyl bond status is not significantly affected by pH when there are ionisable amino acid residues at the carboxyl side of proline, which makes 19 F NMR an invaluable tool with which to study proline isomerism at a range of pHs and in different solvents and buffers.


Assuntos
Peptídeos , Prolina , Conformação Proteica , Peptídeos/química , Espectroscopia de Ressonância Magnética , Isomerismo , Prolina/química
3.
Drug Discov Today ; 27(11): 103337, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995360

RESUMO

It is well established that microRNA (miRNA) dysregulation is involved in the development and progression of various diseases, especially cancer. Emerging evidence suggests that small molecule and peptide agents can interfere with miRNA disease pathways. Despite this, very little is known about structural features that drive drug-miRNA interactions and subsequent inhibition. In this review, we highlight the advances made in the development of small molecule and peptide inhibitors of miRNA processing. Specifically, we attempt to draw attention to peptide features that may be critical for interaction with the miRNA secondary structure to regulate miRNA expression. We hope that this review will help to establish peptides as exciting miRNA expression modulators and will contribute towards the development of the first miRNA-targeting peptide therapy.


Assuntos
MicroRNAs , Neoplasias , Humanos , Oligonucleotídeos/farmacologia , Oligonucleotídeos/uso terapêutico , MicroRNAs/genética , Peptídeos/farmacologia , Neoplasias/genética
4.
Chemistry ; 28(7): e202103305, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34762323

RESUMO

Peptides and proteins are becoming increasingly valuable as medicines, diagnostic agents and as tools for biomedical sciences. Much of this has been underpinned by the emergence of new methods for the manipulation and augmentation of native biomolecules. Perfluoroaromatic reagents are perhaps one of the most diverse and exciting tools with which to modify peptides and proteins, due principally to their nucleophilic substitution chemistry, high electron deficiency and the ability for their reactivity to be tuned towards specific nucleophiles. As discussed in this minireview, in recent years, perfluoroaromatic reagents have found applications as protecting groups or activating groups in peptide synthesis and as orthogonal handles for peptide modification. Furthermore, they have applications in chemoselective 'tagging', stapling and bioconjugation of peptides and proteins, as well as tuning of 'drug-like' properties. This review will also explore possible future applications of these reagents in biological chemistry.


Assuntos
Peptídeos , Proteínas , Técnicas de Química Sintética , Indicadores e Reagentes
5.
J Pharm Sci ; 110(8): 2997-3003, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33864781

RESUMO

In academia and industry, the analysis of counter ions in small molecules and synthetic peptides represents a great challenge. Due to the frequent use of salt forms and the application of a wider range of counter ions in pharmaceutically used substances, simple and generic methods for quantification are required. Especially, the analysis of trifluoracetic acid (TFA) in synthetic peptides is of high interest. Quantification of TFA is needed to assess the content and safety of synthetic peptides and for the interpretation of functional assay results, respectively. In here, a full quantitative mixed mode high performance liquid chromatography based method coupled to evaporative light scattering detection is presented. Finally, 14 positively and negatively charged counter ions were simultaneously quantified within 30 minutes. The method was validated in terms of specificity, accuracy, precision, limit of quantification, sample stability and carry over as proposed by the International Council of Harmonization. In order to prove the applicability of the procedure, small molecules reference substances and synthetic peptides were analyzed, respectively. The obtained results indicated a successful determination of counter ions in small molecules and differences to expected concentrations of prepared peptide solutions. Furthermore, an unexpectedly high content of sodium was observed for synthetic peptides.


Assuntos
Luz , Preparações Farmacêuticas , Cromatografia Líquida de Alta Pressão , Íons , Peptídeos , Reprodutibilidade dos Testes , Espalhamento de Radiação
6.
Drug Discov Today ; 26(6): 1409-1419, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33647438

RESUMO

As of 2020, there were >100 approved peptides with therapeutic or diagnostic applications. However, a complete database providing information on marketed peptides is not freely available, making the peptide chemists' job of designing future peptide drug candidates challenging. Unlike the rules for small-molecule drugs, there is no general set of guidelines for designing a successful peptide-based drug. In this review, together with our freely available database (PepTherDia, http://peptherdia.herokuapp.com), we provide insights into what a successful peptide therapeutic or diagnostic agent looks like and lay the foundation for establishing a set of rules to help future medicinal chemists to design peptide candidates with increased approval rates.


Assuntos
Bases de Dados Factuais , Desenho de Fármacos , Peptídeos/administração & dosagem , Química Farmacêutica/métodos , Aprovação de Drogas , Humanos , Peptídeos/química , Peptídeos/farmacologia
7.
Molecules ; 26(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525730

RESUMO

The covalent and noncovalent association of self-assembling peptides and tetrapyrroles was explored as a way to generate systems that mimic Nature's functional supramolecular structures. Different types of peptides spontaneously assemble with porphyrins, phthalocyanines, or corroles to give long-range ordered architectures, whose structure is determined by the features of both components. The regular morphology and ordered molecular arrangement of these systems enhance the photochemical properties of embedded chromophores, allowing applications as photo-catalysts, antennas for dye-sensitized solar cells, biosensors, and agents for light-triggered therapies. Chemical modifications of peptide and tetrapyrrole structures and control over the assembly process can steer the organization and influence the properties of the resulting system. Here we provide a review of the field, focusing on the assemblies obtained from different classes of self-assembling peptides with tetrapyrroles, their morphologies and their applications as innovative functional materials.


Assuntos
Peptídeos/química , Tetrapirróis/química , Indóis/química , Isoindóis , Fotoquímica/métodos , Porfirinas/química
8.
J Pharm Sci ; 110(3): 1349-1364, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33333144

RESUMO

This study investigated whether the inclusion of a matrix metalloproteinase-9 (MMP-9) responsive sequence in self-assembled peptide-based brain-targeting nanoparticles (NPs) would enhance the blood-brain barrier (BBB) penetration when MMP-9 levels are elevated both in the brain and blood circulation. Brain-targeting peptides were conjugated at the N-terminus to MMP-9-responsive peptides, and these were conjugated at the N-terminus to lipid moiety (cholesteryl chloroformate or palmitic acid). Two constructs did not have MMP-9-responsive peptides. NPs were characterised for size, charge, critical micelle concentration, toxicity, blood compatibility, neural cell uptake, release profiles, and in vitro BBB permeability simulating normal or elevated MMP-9 levels. The inclusion of MMP-9-sensitive sequences did not improve the release of a model drug in the presence of active MMP-9 from NPs compared to distilled water. 19F NMR studies suggested the burial of MMP-9-sensitive sequences inside the NPs making them inaccessible to MMP-9. Only cholesterol-GGGCKAPETALC (responsive to MMP-9) NPs showed <5% haemolysis, <1 pg/mL release of IL-1ß at 500 µg/mL from THP1 cells, with 70.75 ± 5.78% of NPs crossing the BBB at 24 h in presence of active MMP-9. In conclusion, brain-targeting NPs showed higher transport across the BBB model when MMP-9 levels were elevated and the brain-targeting ligand was responsive to MMP-9.


Assuntos
Barreira Hematoencefálica , Nanopartículas , Metaloproteinase 9 da Matriz , Micelas , Peptídeos
9.
J Pharm Sci ; 109(10): 3134-3144, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32621836

RESUMO

Latent and active levels of cerebral matrix metalloproteinase 9 (MMP-9) are elevated in neurological diseases and brain injuries, contributing to neurological damage and poor clinical outcomes. This study aimed developing peptide-based nanoparticles with ability to cross the blood-brain-barrier (BBB) and inhibit MMP-9. Three amphiphilic peptides were synthesised containing brain-targeting ligands (HAIYPRH or CKAPETALC) conjugated with MMP-9 inhibiting peptide (CTTHWGFTLC) linked by glycine (spacer) at the N-terminus, and the peptide sequences were conjugated at the N- terminus to cholesterol. 19F NMR assay was developed to measure MMP-9 inhibition. Cell toxicity was evaluated by the LDH assay, and dialysis studies were conducted with/without fetal bovine serum. An in vitro model was employed to evaluate the ability of nanoparticles crossing the BBB. The amphiphilic peptide (Cholesterol-GGGCTTHWGFTLCHAIYPRH) formed nanoparticles (average size of 202.8 nm) with ability to cross the BBB model. MMP-9 inhibiting nanoparticles were non-toxic to cells, and reduced MMP-9 activity from kobs of 4.5 × 10-6s-1 to complete inhibition. Dialysis studies showed that nanoparticles did not disassemble by extreme dilution (40 folds), but gradually hydrolysed by serum enzymes. In conclusion, the MMP-9 inhibiting nanoparticles reduced the activity of MMP-9, with acceptable serum stability, minimal cell toxicity and ability to cross the in vitro BBB model.


Assuntos
Encefalopatias , Nanopartículas , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Peptídeos , Diálise Renal
10.
J Pharm Pharmacol ; 72(10): 1352-1360, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32588458

RESUMO

OBJECTIVES: To investigate the formulation of the peptide-based antagonist (34 Pro,35 Phe)CGRP27-37 , of the human calcitonin gene-related peptide (CGRP) receptor as a potential nasally delivered migraine treatment. METHODS: Peptide sequences were prepared using automated methods and purified by preparative HPLC. Their structure and stability were determined by LC-MS. Antagonist potency was assessed by measuring CGRP-stimulated cAMP accumulation in SK-N-MC, cells and in CHO cells overexpressing the human CGRP receptor. In vivo activity was tested in plasma protein extravasation (PPE) studies using Evans blue dye accumulation. Peptide-containing chitosan microparticles were prepared by spray drying. KEY FINDINGS: (34 Pro,35 Phe)CGRP27-37 exhibited a 10-fold increased affinity compared to αCGRP27-37 . Administration of (34 Pro,35 Phe)CGRP27-37 to mice led to a significant decrease in CGRP-induced PPE confirming antagonistic properties in vivo. There was no degradation of (34 Pro,35 Phe)CGRP27-37 and no loss of antagonist potency during formulation and release from chitosan microparticles. CONCLUSIONS: (34 Pro,35 Phe)CGRP27-37 is a potent CGRP receptor antagonist both in vitro and in vivo, and it can be formulated as a dry powder with no loss of activity indicating its potential as a nasally formulated anti-migraine medicine.


Assuntos
Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/administração & dosagem , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/metabolismo , Composição de Medicamentos/métodos , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Administração Intranasal , Animais , Células CHO , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/síntese química , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos C57BL
11.
RSC Med Chem ; 11(6): 707-731, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479670

RESUMO

Renewed interest in covalent inhibitors of enzymes implicated in disease states has afforded several agents targeted at protein kinases of relevance to cancers. We now report the design, synthesis and biological evaluation of 6-ethynylpurines that act as covalent inhibitors of Nek2 by capturing a cysteine residue (Cys22) close to the catalytic domain of this protein kinase. Examination of the crystal structure of the non-covalent inhibitor 3-((6-cyclohexylmethoxy-7H-purin-2-yl)amino)benzamide in complex with Nek2 indicated that replacing the alkoxy with an ethynyl group places the terminus of the alkyne close to Cys22 and in a position compatible with the stereoelectronic requirements of a Michael addition. A series of 6-ethynylpurines was prepared and a structure activity relationship (SAR) established for inhibition of Nek2. 6-Ethynyl-N-phenyl-7H-purin-2-amine [IC50 0.15 µM (Nek2)] and 4-((6-ethynyl-7H-purin-2-yl)amino)benzenesulfonamide (IC50 0.14 µM) were selected for determination of the mode of inhibition of Nek2, which was shown to be time-dependent, not reversed by addition of ATP and negated by site directed mutagenesis of Cys22 to alanine. Replacement of the ethynyl group by ethyl or cyano abrogated activity. Variation of substituents on the N-phenyl moiety for 6-ethynylpurines gave further SAR data for Nek2 inhibition. The data showed little correlation of activity with the nature of the substituent, indicating that after sufficient initial competitive binding to Nek2 subsequent covalent modification of Cys22 occurs in all cases. A typical activity profile was that for 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide [IC50 0.06 µM (Nek2); GI50 (SKBR3) 2.2 µM] which exhibited >5-10-fold selectivity for Nek2 over other kinases; it also showed > 50% growth inhibition at 10 µM concentration against selected breast and leukaemia cell lines. X-ray crystallographic analysis confirmed that binding of the compound to the Nek2 ATP-binding site resulted in covalent modification of Cys22. Further studies confirmed that 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide has the attributes of a drug-like compound with good aqueous solubility, no inhibition of hERG at 25 µM and a good stability profile in human liver microsomes. It is concluded that 6-ethynylpurines are promising agents for cancer treatment by virtue of their selective inhibition of Nek2.

12.
Chemistry ; 25(1): 177-182, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30255959

RESUMO

A growing number of approaches to "staple" α-helical peptides into a bioactive conformation using cysteine cross-linking are emerging. Here, the replacement of l-cysteine with "cysteine analogues" in combinations of different stereochemistry, side chain length and beta-carbon substitution, is explored to examine the influence that the thiol-containing residue(s) has on target protein binding affinity in a well-explored model system, p53-MDM2/MDMX, which is constituted by the interaction of the tumour suppressor protein p53 and proteins MDM2 and MDMX, which regulate p53 activity. In some cases, replacement of one or more l-cysteine residues afforded significant changes in the measured binding affinity and target selectivity of the peptide. Computationally constructed homology models indicate that some modifications, such as incorporating two d-cysteine residues, favourably alter the positions of key functional amino acid side chains, which is likely to cause changes in binding affinity, in agreement with measured surface plasmon resonance data.


Assuntos
Cisteína/química , Fluorocarbonos/química , Peptídeos/química , Sequência de Aminoácidos , Cisteína/metabolismo , Humanos , Peptídeos/síntese química , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Biochemistry ; 57(43): 6132-6143, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30277385

RESUMO

Amide bonds at the proline nitrogen are particularly susceptible to rotation, affording cis and trans isomers. Installation of a stereochemically defined electron-withdrawing fluorine atom or fluorinated groups has the power to influence the cis- trans conformational preferences of the amide bond in X-(F)Pro (where X = any other amino acid). Advantageously, this also provides a sensitive reporter for 19F nuclear magnetic resonance (NMR) studies of protein conformation, interactions, and dynamics. We deliberately use the term "fluorinated prolines" as an all-encompassing term to describe proline analogues containing one or more fluorine atoms and to avoid confusion with the more well-known 4-fluoroprolines. This review presents a critical discussion of the growing repertoire of fluorinated prolines that have been described and, importantly, provides a comparison of their uses and relative influence on amide-bond conformation and discusses the significant potential of using 19F NMR as a tool to probe conformational changes in polypeptides.


Assuntos
Halogenação , Peptídeos/química , Prolina/química , Proteínas/química , Espectroscopia de Ressonância Magnética , Conformação Proteica
14.
Org Biomol Chem ; 15(19): 4086-4095, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28470238

RESUMO

The perfluoroheteroaromatic reagent pentafluoropyridine has proved to be a highly reactive electrophile, undergoing SNAr arylation reactions in the presence of a range of nucleophilic peptide side chains (i.e. cysteine, tyrosine, serine and lysine) under mild conditions. Moreover, we have shown how one-step peptide-modification using perfluoroheteroaromatics can deliver enhanced proteolytic stability in pharmaceutically-relevant peptides such as oxytocin.


Assuntos
Fluorocarbonos/química , Hidrocarbonetos Aromáticos/química , Peptídeos/química , Indicadores e Reagentes/química , Modelos Moleculares , Conformação Molecular , Peptídeos/metabolismo , Estabilidade Proteica , Proteólise
15.
Oncotarget ; 8(12): 19089-19124, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27833088

RESUMO

Nek2 (NIMA-related kinase 2) is a cell cycle-dependent serine/threonine protein kinase that regulates centrosome separation at the onset of mitosis. Overexpression of Nek2 is common in human cancers and suppression can restrict tumor cell growth and promote apoptosis. Nek2 inhibition with small molecules, therefore, offers the prospect of a new therapy for cancer. To achieve this goal, a better understanding of the requirements for selective-inhibition of Nek2 is required. 6-Alkoxypurines were identified as ATP-competitive inhibitors of Nek2 and CDK2. Comparison with CDK2-inhibitor structures indicated that judicious modification of the 6-alkoxy and 2-arylamino substituents could achieve discrimination between Nek2 and CDK2. In this study, a library of 6-cyclohexylmethoxy-2-arylaminopurines bearing carboxamide, sulfonamide and urea substituents on the 2-arylamino ring was synthesized. Few of these compounds were selective for Nek2 over CDK2, with the best result being obtained for 3-((6-(cyclohexylmethoxy)-9H-purin-2-yl)amino)-N,N-dimethylbenzamide (CDK2 IC50 = 7.0 µM; Nek2 IC50 = 0.62 µM) with >10-fold selectivity. Deletion of the 6-substituent abrogated activity against both Nek2 and CDK2. Nine compounds containing an (E)-dialkylaminovinyl substituent at C-6, all showed selectivity for Nek2, e.g. (E)-6-(2-(azepan-1-yl)vinyl)-N-phenyl-9H-purin-2-amine (CDK2 IC50 = 2.70 µM; Nek2 IC50 = 0.27 µM). Structural biology of selected compounds enabled a partial rationalization of the observed structure activity relationships and mechanism of Nek2 activation. This showed that carboxamide 11 is the first reported inhibitor of Nek2 in the DFG-in conformation.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Quinases Relacionadas a NIMA/antagonistas & inibidores , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Relação Estrutura-Atividade
16.
Malar J ; 15(1): 535, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27821169

RESUMO

BACKGROUND: Examining essential biochemical pathways in Plasmodium falciparum presents serious challenges, as standard molecular techniques such as siRNA cannot be employed in this organism, and generating gene knock-outs of essential proteins requires specialized conditional approaches. In the study of protein kinases, pharmacological inhibition presents a feasible alternative option. However, as in mammalian systems, inhibitors often lack the desired selectivity. Described here is a chemical genetic approach to selectively inhibit Pfnek-2 in P. falciparum, a member of the NIMA-related kinase family that is essential for completion of the sexual development of the parasite. RESULTS: Introduction of a valine to cysteine mutation at position 24 in the glycine rich loop of Pfnek-2 does not affect kinase activity but confers sensitivity to the protein kinase inhibitor 4-(6-ethynyl-9H-purin-2-ylamino) benzene sulfonamide (NCL-00016066). Using a combination of in vitro kinase assays and mass spectrometry, (including phosphoproteomics) the study shows that this compound acts as an irreversible inhibitor to the mutant Pfnek2 likely through a covalent link with the introduced cysteine residue. In particular, this was shown by analysis of total protein mass using mass spectrometry which showed a shift in molecular weight of the mutant kinase in the presence of the inhibitor to be precisely equivalent to the molecular weight of NCL-00016066. A similar molecular weight shift was not observed in the wild type kinase. Importantly, this inhibitor has little activity towards the wild type Pfnek-2 and, therefore, has all the properties of an effective chemical genetic tool that could be employed to determine the cellular targets for Pfnek-2. CONCLUSIONS: Allelic replacement of wild-type Pfnek-2 with the mutated kinase will allow for targeted inhibition of Pfnek-2 with NCL-00016066 and hence pave the way for comparative studies aimed at understanding the biological role and transmission-blocking potential of Pfnek-2.


Assuntos
Inibidores Enzimáticos/metabolismo , Proteínas Mutantes/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Plasmodium falciparum/enzimologia , Purinas/metabolismo , Sulfonamidas/metabolismo , Espectrometria de Massas , Proteínas Mutantes/genética , Quinases Relacionadas a NIMA/genética
17.
Org Biomol Chem ; 12(1): 141-8, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24213855

RESUMO

Recent studies have shown that irreversible inhibition of Nek2 kinase [(Never in mitosis gene a)-related kinase 2], overexpression of which is observed in several cancers, can be achieved using Michael acceptors containing an ethynyl group, which target the enzyme's cysteine 22 residue lying near the catalytic site. The model studies described herein demonstrate an analogous capture of the ethynyl moiety in a series of ethynyl-heterocycles (e.g. 6-ethynyl-N-phenyl-9H-purin-2-amine) by N-acetylcysteine methyl ester in the presence of 1,4-diazabicyclo[2.2.2]octane in either dimethyl sulfoxide or N,N-dimethylformamide. Kinetic studies showed a 50-fold range in reactivity with 7-ethynyl-N-phenyl-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine being the most reactive compound, whereas 4-ethynyl-N-phenyl-7H-pyrrolo[2,3-d]pyrimidin-2-amine was the least reactive. Studies of the isomeric compounds, 2-(3-((6-ethynyl-7-methyl-7H-purin-2-yl)amino)phenyl)acetamide and 2-(3-((6-ethynyl-9-methyl-9H-purin-2-yl)amino)phenyl)acetamide, revealed the N(7)-methyl isomer to be 5-fold more reactive than the 9-methyl isomer, which is ascribed to a buttressing effect in the N(7)-methyl compound. Comparison of the crystal structures of these isomers showed that the ethynyl group is significantly displaced away from the methyl group exclusively in the N(7)-methyl isomer with an sp(2) bond angle of 124°, whereas the corresponding angle in the N(9)-methyl isomer was the expected 120°. The results of this study indicate heterocyclic scaffolds that are likely to be more promising for inhibition of Nek2 and other kinases containing a reactive cysteine.


Assuntos
Compostos Heterocíclicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Purinas/farmacologia , Compostos de Sulfidrila/química , Cristalografia por Raios X , Compostos Heterocíclicos/química , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Quinases Relacionadas a NIMA , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Purinas/química
18.
Proc Natl Acad Sci U S A ; 110(15): 5812-7, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23530204

RESUMO

Multiple-herbicide resistance (MHR) in black-grass (Alopecurus myosuroides) and annual rye-grass (Lolium rigidum) is a global problem leading to a loss of chemical weed control in cereal crops. Although poorly understood, in common with multiple-drug resistance (MDR) in tumors, MHR is associated with an enhanced ability to detoxify xenobiotics. In humans, MDR is linked to the overexpression of a pi class glutathione transferase (GSTP1), which has both detoxification and signaling functions in promoting drug resistance. In both annual rye-grass and black-grass, MHR was also associated with the increased expression of an evolutionarily distinct plant phi (F) GSTF1 that had a restricted ability to detoxify herbicides. When the black-grass A. myosuroides (Am) AmGSTF1 was expressed in Arabidopsis thaliana, the transgenic plants acquired resistance to multiple herbicides and showed similar changes in their secondary, xenobiotic, and antioxidant metabolism to those determined in MHR weeds. Transcriptome array experiments showed that these changes in biochemistry were not due to changes in gene expression. Rather, AmGSTF1 exerted a direct regulatory control on metabolism that led to an accumulation of protective flavonoids. Further evidence for a key role for this protein in MHR was obtained by showing that the GSTP1- and MDR-inhibiting pharmacophore 4-chloro-7-nitro-benzoxadiazole was also active toward AmGSTF1 and helped restore herbicide control in MHR black-grass. These studies demonstrate a central role for specific GSTFs in MHR in weeds that has parallels with similar roles for unrelated GSTs in MDR in humans and shows their potential as targets for chemical intervention in resistant weed management.


Assuntos
Glutationa Transferase/fisiologia , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Plantas Daninhas/enzimologia , Poaceae/enzimologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glutationa Transferase/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Plantas Daninhas/genética , Plantas Geneticamente Modificadas , Poaceae/genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA