Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(9): 2389-2394, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193887

RESUMO

Parkinson disease (PD) is a neurodegenerative disorder pathologically characterized by nigrostriatal dopamine neuron loss and the postmortem presence of Lewy bodies, depositions of insoluble α-synuclein, and other proteins that likely contribute to cellular toxicity and death during the disease. Genetic and biochemical studies have implicated impaired lysosomal and mitochondrial function in the pathogenesis of PD. Transmembrane protein 175 (TMEM175), the lysosomal K+ channel, is centered under a major genome-wide association studies peak for PD, making it a potential candidate risk factor for the disease. To address the possibility that variation in TMEM175 could play a role in PD pathogenesis, TMEM175 function was investigated in a neuronal model system. Studies confirmed that TMEM175 deficiency results in unstable lysosomal pH, which led to decreased lysosomal catalytic activity, decreased glucocerebrosidase activity, impaired autophagosome clearance by the lysosome, and decreased mitochondrial respiration. Moreover, TMEM175 deficiency in rat primary neurons resulted in increased susceptibility to exogenous α-synuclein fibrils. Following α-synuclein fibril treatment, neurons deficient in TMEM175 were found to have increased phosphorylated and detergent-insoluble α-synuclein deposits. Taken together, data from these studies suggest that TMEM175 plays a direct and critical role in lysosomal and mitochondrial function and PD pathogenesis and highlight this ion channel as a potential therapeutic target for treating PD.


Assuntos
Autofagossomos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Canais de Potássio/genética , alfa-Sinucleína/química , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/patologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/efeitos dos fármacos , Lisossomos/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Modelos Biológicos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Canais de Potássio/deficiência , Cultura Primária de Células , Agregados Proteicos/efeitos dos fármacos , Ratos , alfa-Sinucleína/farmacologia
2.
Science ; 335(6075): 1503-6, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22323736

RESUMO

Alzheimer's disease (AD) is associated with impaired clearance of ß-amyloid (Aß) from the brain, a process normally facilitated by apolipoprotein E (apoE). ApoE expression is transcriptionally induced through the action of the nuclear receptors peroxisome proliferator-activated receptor gamma and liver X receptors in coordination with retinoid X receptors (RXRs). Oral administration of the RXR agonist bexarotene to a mouse model of AD resulted in enhanced clearance of soluble Aß within hours in an apoE-dependent manner. Aß plaque area was reduced more than 50% within just 72 hours. Furthermore, bexarotene stimulated the rapid reversal of cognitive, social, and olfactory deficits and improved neural circuit function. Thus, RXR activation stimulates physiological Aß clearance mechanisms, resulting in the rapid reversal of a broad range of Aß-induced deficits.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Tetra-Hidronaftalenos/farmacologia , Tetra-Hidronaftalenos/uso terapêutico , Amiloidose/tratamento farmacológico , Amiloidose/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Comportamento Animal/efeitos dos fármacos , Bexaroteno , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Terapia de Alvo Molecular , Odorantes , Condutos Olfatórios/efeitos dos fármacos , Condutos Olfatórios/fisiologia , Receptores Nucleares Órfãos/metabolismo , PPAR gama/metabolismo , Fagocitose , Placa Amiloide/tratamento farmacológico , Receptores X de Retinoides/agonistas , Receptores X de Retinoides/metabolismo
3.
Neurobiol Aging ; 33(1): 197.e21-32, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20696495

RESUMO

Considerable evidence points to important roles for inflammation in Alzheimer's disease (AD) pathophysiology. Epidemiological studies have suggested that long-term nonsteroidal anti-inflammatory drug (NSAID) therapy reduces the risk for Alzheimer's disease; however, the mechanism remains unknown. We report that a 9-month treatment of aged R1.40 mice resulted in 90% decrease in plaque burden and a similar reduction in microglial activation. Ibuprofen treatment reduced levels of lipid peroxidation, tyrosine nitration, and protein oxidation, demonstrating a dramatic effect on oxidative damage in vivo. Fibrillar ß-amyloid (Aß) stimulation has previously been demonstrated to induce the assembly and activation of the microglial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase leading to superoxide production through a tyrosine kinase-based signaling cascade. Ibuprofen treatment of microglia or monocytes with racemic or S-ibuprofen inhibited Aß-stimulated Vav tyrosine phosphorylation, NADPH oxidase assembly, and superoxide production. Interestingly, Aß-stimulated Vav phosphorylation was not inhibited by COX inhibitors. These findings suggest that ibuprofen acts independently of cyclooxygenase COX inhibition to disrupt signaling cascades leading to microglial NADPH oxidase (NOX2) activation, preventing oxidative damage and enhancing plaque clearance in the brain.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/prevenção & controle , Anti-Inflamatórios não Esteroides/farmacologia , Ibuprofeno/farmacologia , NADPH Oxidases/antagonistas & inibidores , Peptídeos beta-Amiloides , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ibuprofeno/uso terapêutico , Masculino , Camundongos , Camundongos Transgênicos , Microglia/enzimologia , Microglia/metabolismo , Microglia/patologia , Monócitos/metabolismo , NADPH Oxidases/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Placa Amiloide , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-vav , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA