RESUMO
Following a screening campaign of bleeding cankers of broadleaf hosts in Great Britain, numerous bacterial strains were isolated, identified by 16S rRNA and protein-coding gene sequencing and ultimately classified. During the course of the study, several Gram-negative, facultatively anaerobic strains were isolated from bleeding Platanus x acerifolia (London plane) and Tilia x europaea (common lime) cankers that could not be assigned to an existing species. Partial 16S rRNA gene sequencing placed these strains in the genus Erwinia, as a close phylogenetic relative of Erwinia toletana. In an effort to determine the taxonomic position of the strains, a polyphasic approach was followed including genotypic, genomic, phenotypic, and chemotaxonomic assays. Multilocus sequence analysis based on four protein-coding genes (gyrB, rpoB, infB, and atpD) confirmed the phylogenetic position of the strains as a novel taxon of subgroup 3 of the genus Erwinia, along with E. toletana and E. iniecta, and furthermore, provided support for their reclassification in a novel genus. Whole genome comparisons allowed the delimitation of the novel species and also supported the proposed transfer of subgroup 3 species to a novel genus in the Erwiniaeae. Phenotypically the novel species could be differentiated from E. toletana and E. iniecta, and the novel genus could be differentiated from the closely related genera Erwinia and Mixta. Therefore, we propose (1) the reclassification of E. toletana and E. iniecta in a novel genus, Winslowiella gen. nov., as Winslowiella toletana comb. nov. and Winslowiella iniecta comb. nov., with W. toletana comb. nov. as the type species (type strain A37T = CFBP 6631T = ATCC 700880T = CECT 5263T), and (2) classification of the novel strains as Winslowiella arboricola sp. nov. (type strain BAC 15a-03bT = LMG 32576T = NCPPB 4696T).
Assuntos
Síndrome de Sjogren/terapia , Adulto , Candidíase Bucal/tratamento farmacológico , Síndromes do Olho Seco/terapia , Feminino , Glucocorticoides/uso terapêutico , Humanos , Imunossupressores/uso terapêutico , Lubrificantes Oftálmicos/uso terapêutico , Linfoma/diagnóstico , Linfoma/etiologia , Higiene Bucal , Gravidez , Complicações na Gravidez/terapia , Sialadenite/terapia , Síndrome de Sjogren/complicaçõesRESUMO
Greyia radlkoferi ethanol extract and its five compounds were tested for their inhibitory activity against the mushroom tyrosinase enzyme and melanin production on melanocytes. The crude extract showed significant tyrosinase inhibition with IC50 of 17.96µg/ml. This is the first report of the isolation of these 5 compounds from Greyia radlkoferi. 2',4',6'-Trihydroxydihydrochalcone showed the highest tyrosinase inhibition at 17.70µg/ml (68.48µM), with low toxicity when compared with crude extract. This compound is therefore, a key component in the crude extract, which is responsible for tyrosinase inhibitory activity. The RT-qPCR indicated that the mechanism of action is most likely post transcriptional. Further, the molecular docking study showed that tyrosinase inhibitory activity depends on interaction of the compound with Cu2+ ions at the active site. This is the first report of the tyrosinase inhibitory activity of the G. radlkoferi extract and molecular insights on interaction of its compounds with Cu2+ ions as the driving factor for tyrosinase inhibition. These results suggest that the extract of G. radlkoferi and the compound 2',4',6'-trihydroxydihydrochalcone have great potential to be further developed as pharmaceutical or cosmetic agents for use against dermatological disorders associated with melanin.
Assuntos
Inibidores Enzimáticos/farmacologia , Magnoliopsida/química , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Perfilação da Expressão Gênica , Humanos , Camundongos , Estrutura Molecular , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-AtividadeRESUMO
BACKGROUND: Plasmodium falciparum, the causative agent of severe human malaria, has evolved to become resistant to previously successful antimalarial chemotherapies, most notably chloroquine and the antifolates. The prevalence of resistant strains has necessitated the discovery and development of new chemical entities with novel modes-of-action. Although much effort has been invested in the creation of analogues based on existing drugs and the screening of chemical and natural compound libraries, a crucial shortcoming in current Plasmodial drug discovery efforts remains the lack of an extensive set of novel, validated drug targets. A requirement of these targets (or the pathways in which they function) is that they prove essential for parasite survival. The polyamine biosynthetic pathway, responsible for the metabolism of highly abundant amines crucial for parasite growth, proliferation and differentiation, is currently under investigation as an antimalarial target. Chemotherapeutic strategies targeting this pathway have been successfully utilized for the treatment of Trypanosomes causing West African sleeping sickness. In order to further evaluate polyamine depletion as possible antimalarial intervention, the consequences of inhibiting P. falciparum spermidine synthase (PfSpdSyn) were examined on a morphological, transcriptomic, proteomic and metabolic level. RESULTS: Morphological analysis of P. falciparum 3D7 following application of the PfSpdSyn inhibitor cyclohexylamine confirmed that parasite development was completely arrested at the early trophozoite stage. This is in contrast to untreated parasites which progressed to late trophozoites at comparable time points. Global gene expression analyses confirmed a transcriptional arrest in the parasite. Several of the differentially expressed genes mapped to the polyamine biosynthetic and associated metabolic pathways. Differential expression of corresponding parasite proteins involved in polyamine biosynthesis was also observed. Most notably, uridine phosphorylase, adenosine deaminase, lysine decarboxylase (LDC) and S-adenosylmethionine synthetase were differentially expressed at the transcript and/or protein level. Several genes in associated metabolic pathways (purine metabolism and various methyltransferases) were also affected. The specific nature of the perturbation was additionally reflected by changes in polyamine metabolite levels. CONCLUSIONS: This study details the malaria parasite's response to PfSpdSyn inhibition on the transcriptomic, proteomic and metabolic levels. The results corroborate and significantly expand previous functional genomics studies relating to polyamine depletion in this parasite. Moreover, they confirm the role of transcriptional regulation in P. falciparum, particularly in this pathway. The findings promote this essential pathway as a target for antimalarial chemotherapeutic intervention strategies.