Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34685593

RESUMO

TLR5 ligand flagellin-containing fusion proteins are potential vaccine candidates for many diseases. A recombinant fusion protein of flagellin A and the major birch pollen allergen Bet v 1 (rFlaA:Betv1) modulates immune responses in vitro and in vivo. We studied the effects of rFlaA:Betv1 on bone marrow-derived macrophages (BMDMs). BMDMs differentiated from BALB/c, C57BL/6, TLR5-/-, or MyD88-/- mice were pre-treated with inhibitors, stimulated with rFlaA:Betv1 or respective controls, and analyzed for activation, cytokine secretion, metabolic state, RNA transcriptome, and modulation of allergen-specific Th2 responses. Stimulation of BMDMs with rFlaA:Betv1 resulted in MyD88-dependent production of IL-1ß, IL-6, TNF-α, IL-10, CD69 upregulation, and a pronounced shift towards glycolysis paralleled by activation of MAPK, NFκB, and mTOR signaling. Inhibition of either mTOR (rapamycin) or SAP/JNK-MAPK signaling (SP600125) resulted in dose-dependent metabolic suppression. In BMDM and T cell co-cultures, rFlaA:Betv1 stimulation suppressed rBet v 1-induced IL-5 and IL-13 secretion while inducing IFN-γ production. mRNA-Seq analyses showed HIF-1a, JAK, STAT, phagosome, NLR, NFκB, TNF, TLR, and chemokine signaling to participate in the interplay of cell activation, glycolysis, and immune response. rFlaA:Betv1 strongly activated BMDMs, resulting in MyD88-, MAPK-, and mTOR-dependent enhancement of glucose metabolism. Our results suggest macrophages are important target cells to consider during restauration of allergen tolerance during AIT.


Assuntos
Alérgenos/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Plantas/imunologia , Flagelina/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Proteínas de Bactérias/imunologia , Células Cultivadas , Glucose/metabolismo , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Plantas/imunologia , Pólen/imunologia
2.
Sci Rep ; 11(1): 10141, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980880

RESUMO

Evidence has suggested that major peanut allergen Ara h 1 activates dendritic cells (DCs) via interaction with DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin), a C-type lectin receptor, and contributes to development of peanut allergy. Since macrophages, as well as DCs, play a crucial role in innate immunity, we investigated whether natural Ara h 1 (nAra h 1) activates two different subsets of macrophages, human monocyte derived macrophage type 1 (hMDM1: pro-inflammatory model) and type 2 (hMDM2: anti-inflammatory model). hMDM1 and hMDM2 predominantly produced pro-inflammatory cytokines (IL-6 and TNF-α) and an anti-inflammatory cytokine (IL-10) in response to nAra h 1, respectively. hMDM2 took up nAra h 1 and expressed DC-SIGN at higher levels than hMDM1. However, small interfering RNA knockdown of DC-SIGN did not suppress nAra h 1 uptake and nAra h 1-mediated cytokine production in hMDM2. Inhibitors of scavenger receptor class A type I (SR-AI) suppressed the response of hMDM2, but not of hMDM1, suggesting that SR-AI is a major receptor in hMDM2 for nAra h 1 recognition and internalization. nAra h 1 appears to exert stimulatory capacity on DC and macrophages via different receptors. This study advances our understanding how a major peanut allergen interacts with innate immunity.


Assuntos
Alérgenos/imunologia , Antígenos de Plantas/imunologia , Arachis/imunologia , Plasticidade Celular/imunologia , Macrófagos/imunologia , Proteínas de Membrana/imunologia , Monócitos/imunologia , Hipersensibilidade a Amendoim/imunologia , Proteínas de Plantas/imunologia , Biomarcadores , Suscetibilidade a Doenças , Humanos , Imunofenotipagem , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/metabolismo , Hipersensibilidade a Amendoim/diagnóstico , Hipersensibilidade a Amendoim/metabolismo
3.
Front Immunol ; 10: 2697, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824492

RESUMO

In cutaneous Leishmaniasis the parasitic control in human host macrophages is still poorly understood. We found an increased expression of the human cathelicidin CAMP in skin lesions of Ethiopian patients with cutaneous leishmaniasis. Vitamin D driven, Cathelicidin-type antimicrobial peptides (CAMP) play an important role in the elimination of invading microorganisms. Recombinant cathelicidin was able to induce cell-death characteristics in Leishmania in a dose dependent manner. Using human primary macrophages, we demonstrated pro-inflammatory macrophages (hMDM1) to express a higher level of human cathelicidin, both on gene and protein level, compared to anti-inflammatory macrophages (hMDM2). Activating the CAMP pathway using Vitamin D in hMDM1 resulted in a cathelicidin-mediated-Leishmania restriction. Finally, a reduction of cathelicidin in hMDM1, using a RNA interference (RNAi) approach, increased Leishmania parasite survival. In all, these data show the human cathelicidin to contribute to the innate immune response against Leishmaniasis in a human primary cell model.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Imunidade Inata/imunologia , Leishmaniose Cutânea/imunologia , Macrófagos/imunologia , Células Cultivadas , Humanos , Catelicidinas
4.
Front Immunol ; 10: 2210, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636629

RESUMO

Phagocytosis is a cellular process crucial for recognition and removal of apoptotic cells and foreign particles, subsequently initiating appropriate immune responses. The process of phagocytosis is highly complex and involves major rearrangements of the cytoskeleton. Due to its complexity and importance for tissue homoeostasis and immune responses, it is tightly regulated. Over the last decade, microRNAs (miRNAs) have emerged as important regulators of biological pathways including the immune response by fine-tuning expression of gene regulatory networks. In order to identify miRNAs implicated in the regulation of phagocytosis, a systematic screening of all currently known, human miRNAs was performed using THP-1 macrophage-like cells and serum-opsonized latex beads. Of the total of 2,566 miRNAs analyzed, several led to significant changes in phagocytosis. Among these, we validated miR-124-5p as a novel regulator of phagocytosis. Transfection with miR-124-5p mimics reduced the number of phagocytic cells as well as the phagocytic activity of phorbol-12-myristate-13-acetate (PMA)-activated THP-1 cells and ex vivo differentiated primary human macrophages. In silico analysis suggested that miR-124-5p targets genes involved in regulation of the actin cytoskeleton. Transcriptional analyses revealed that expression of genes encoding for several subunits of the ARP2/3 complex, a crucial regulator of actin polymerization, is reduced upon transfection of cells with miR-124-5p. Further in silico analyses identified potential binding motifs for miR-124-5p in the mRNAs of these genes. Luciferase reporter assays using these binding motifs indicate that at least two of the genes (ARPC3 and ARPC4) are direct targets of miR-124-5p. Moreover, ARPC3 and ARPC4 protein levels were significantly reduced following miR-124-5p transfection. Collectively, the presented results suggest that miR-124-5p regulates phagocytosis in human macrophages by directly targeting expression of components of the ARP2/3 complex.


Assuntos
Citoesqueleto de Actina/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/fisiologia , Macrófagos/imunologia , MicroRNAs/fisiologia , Fagocitose , Células HEK293 , Humanos , Células THP-1
5.
Front Immunol ; 9: 1772, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30108591

RESUMO

Tumor necrosis factor α (TNFα) drives the pathophysiology of human autoimmune diseases and consequently, neutralizing antibodies (Abs) or Ab-derived molecules directed against TNFα are essential therapeutics. As treatment with several TNFα blockers has been reported to entail a higher risk of infectious diseases such as leishmaniasis, we established an in vitro model based on Leishmania-infected human macrophages, co-cultured with autologous T-cells, for the analysis and comparison of anti-TNFα therapeutics. We demonstrate that neutralization of soluble TNFα (sTNFα) by the anti-TNFα Abs Humira®, Remicade®, and its biosimilar Remsima® negatively affects infection as treatment with these agents significantly reduces Leishmania-induced T-cell proliferation and increases the number of infected macrophages. By contrast, we show that blockade of sTNFα by Cimzia® does not affect T-cell proliferation and infection rates. Moreover, compared to Remicade®, treatment with Cimzia® does not impair the expression of cytolytic effector proteins in proliferating T-cells. Our data demonstrate that Cimzia® supports parasite control through its conjugated polyethylene glycol (PEG) moiety as PEGylation of Remicade® improves the clearance of intracellular Leishmania. This effect can be linked to complement activation, with levels of complement component C5a being increased upon treatment with Cimzia® or a PEGylated form of Remicade®. Taken together, we provide an in vitro model of human leishmaniasis that allows direct comparison of different anti-TNFα agents. Our results enhance the understanding of the efficacy and adverse effects of TNFα blockers and they contribute to evaluate anti-TNFα therapy for patients living in countries with a high prevalence of leishmaniasis.


Assuntos
Anticorpos Monoclonais/farmacologia , Leishmania/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adalimumab/imunologia , Adalimumab/farmacologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Células Cultivadas , Certolizumab Pegol/imunologia , Certolizumab Pegol/farmacologia , Técnicas de Cocultura , Humanos , Infliximab/imunologia , Infliximab/farmacologia , Leishmania/imunologia , Leishmania/fisiologia , Leishmaniose/tratamento farmacológico , Leishmaniose/imunologia , Leishmaniose/parasitologia , Macrófagos/imunologia , Macrófagos/parasitologia , Linfócitos T/imunologia , Linfócitos T/parasitologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
6.
Autophagy ; 11(2): 285-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25801301

RESUMO

Apoptosis is a well-defined cellular process in which a cell dies, characterized by cell shrinkage and DNA fragmentation. In parasites like Leishmania, the process of apoptosis-like cell death has been described. Moreover upon infection, the apoptotic-like population is essential for disease development, in part by silencing host phagocytes. Nevertheless, the exact mechanism of how apoptosis in unicellular organisms may support infectivity remains unclear. Therefore we investigated the fate of apoptotic-like Leishmania parasites in human host macrophages. Our data showed--in contrast to viable parasites--that apoptotic-like parasites enter an LC3(+), autophagy-like compartment. The compartment was found to consist of a single lipid bilayer, typical for LC3-associated phagocytosis (LAP). As LAP can provoke anti-inflammatory responses and autophagy modulates antigen presentation, we analyzed how the presence of apoptotic-like parasites affected the adaptive immune response. Macrophages infected with viable Leishmania induced proliferation of CD4(+) T-cells, leading to a reduced intracellular parasite survival. Remarkably, the presence of apoptotic-like parasites in the inoculum significantly reduced T-cell proliferation. Chemical induction of autophagy in human monocyte-derived macrophage (hMDM), infected with viable parasites only, had an even stronger proliferation-reducing effect, indicating that host cell autophagy and not parasite viability limits the T-cell response and enhances parasite survival. Concluding, our data suggest that apoptotic-like Leishmania hijack the host cells' autophagy machinery to reduce T-cell proliferation. Furthermore, the overall population survival is guaranteed, explaining the benefit of apoptosis-like cell death in a single-celled parasite and defining the host autophagy pathway as a potential therapeutic target in treating Leishmaniasis.


Assuntos
Apoptose/imunologia , Autofagia/imunologia , Leishmania/imunologia , Linfócitos T/imunologia , Animais , Humanos , Leishmaniose/imunologia , Macrófagos/imunologia , Fagócitos/imunologia , Fagocitose/imunologia
7.
PLoS One ; 8(6): e66898, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776701

RESUMO

Macrophages are an important line of defence against invading pathogens. Human macrophages derived by different methods were tested for their suitability as models to investigate Listeria monocytogenes (Lm) infection and compared to macrophage-like THP-1 cells. Human primary monocytes were isolated by either positive or negative immunomagnetic selection and differentiated in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF) into pro- or anti-inflammatory macrophages, respectively. Regardless of the isolation method, GM-CSF-derived macrophages (GM-Mφ) stained positive for CD206 and M-CSF-derived macrophages (M-Mφ) for CD163. THP-1 cells did not express CD206 or CD163 following incubation with PMA, M- or GM-CSF alone or in combination. Upon infection with Lm, all primary macrophages showed good survival at high multiplicities of infection whereas viability of THP-1 was severely reduced even at lower bacterial numbers. M-Mφ generally showed high phagocytosis of Lm. Strikingly, phagocytosis of Lm by GM-Mφ was markedly influenced by the method used for isolation of monocytes. GM-Mφ derived from negatively isolated monocytes showed low phagocytosis of Lm whereas GM-Mφ generated from positively selected monocytes displayed high phagocytosis of Lm. Moreover, incubation with CD14 antibody was sufficient to enhance phagocytosis of Lm by GM-Mφ generated from negatively isolated monocytes. By contrast, non-specific phagocytosis of latex beads by GM-Mφ was not influenced by treatment with CD14 antibody. Furthermore, phagocytosis of Lactococcus lactis, Escherichia coli, human cytomegalovirus and the protozoan parasite Leishmania major by GM-Mφ was not enhanced upon treatment with CD14 antibody indicating that this effect is specific for Lm. Based on these observations, we propose macrophages derived by ex vivo differentiation of negatively selected human primary monocytes as the most suitable model to study Lm infection of macrophages.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Listeria monocytogenes/imunologia , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Fagocitose/fisiologia , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA