Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(10): e1011682, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782657

RESUMO

Human cytomegalovirus (HCMV) encodes multiple putative G protein-coupled receptors (GPCRs). US28 functions as a viral chemokine receptor and is expressed during both latent and lytic phases of virus infection. US28 actively promotes cellular migration, transformation, and plays a major role in mediating viral latency and reactivation; however, knowledge about the interaction partners involved in these processes is still incomplete. Herein, we utilized a proximity-dependent biotinylating enzyme (TurboID) to characterize the US28 interactome when expressed in isolation, and during both latent (CD34+ hematopoietic progenitor cells) and lytic (fibroblasts) HCMV infection. Our analyses indicate that the US28 signalosome converges with RhoA and EGFR signal transduction pathways, sharing multiple mediators that are major actors in processes such as cellular proliferation and differentiation. Integral members of the US28 signaling complex were validated in functional assays by immunoblot and small-molecule inhibitors. Importantly, we identified RhoGEFs as key US28 signaling intermediaries. In vitro latency and reactivation assays utilizing primary CD34+ hematopoietic progenitor cells (HPCs) treated with the small-molecule inhibitors Rhosin or Y16 indicated that US28 -RhoGEF interactions are required for efficient viral reactivation. These findings were recapitulated in vivo using a humanized mouse model where inhibition of RhoGEFs resulted in a failure of the virus to reactivate. Together, our data identifies multiple new proteins in the US28 interactome that play major roles in viral latency and reactivation, highlights the utility of proximity-sensor labeling to characterize protein interactomes, and provides insight into targets for the development of novel anti-HCMV therapeutics.


Assuntos
Citomegalovirus , Transdução de Sinais , Animais , Camundongos , Humanos , Citomegalovirus/fisiologia , Latência Viral , Diferenciação Celular , Células-Tronco Hematopoéticas
2.
J Virol ; 97(10): e0124123, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772824

RESUMO

IMPORTANCE: CD34+ hematopoietic progenitor cells (HPCs) are an important cellular reservoir for latent human cytomegalovirus (HCMV). Several HCMV genes are expressed during latency that are involved with the maintenance of the viral genome in CD34+ HPC. However, little is known about the process of viral reactivation in these cells. Here, we describe a viral protein, pUL8, and its interaction and stabilization with members of the Wnt/ß-catenin pathway as an important component of viral reactivation. We further define that pUL8 and ß-catenin interact with DVL2 via a PDZ-binding domain, and loss of UL8 interaction with ß-catenin-DVL2 restricts viral reactivation. Our findings will be instrumental in understanding the molecular processes involved in HCMV reactivation in order to design new antiviral therapeutics.


Assuntos
Antígenos CD34 , Citomegalovirus , Proteínas Desgrenhadas , Células-Tronco Hematopoéticas , Proteínas Virais , Ativação Viral , beta Catenina , Humanos , Antígenos CD34/metabolismo , beta Catenina/química , beta Catenina/metabolismo , Citomegalovirus/genética , Citomegalovirus/fisiologia , Proteínas Desgrenhadas/química , Proteínas Desgrenhadas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/virologia , Domínios PDZ , Proteínas Virais/química , Proteínas Virais/metabolismo , Latência Viral/genética
3.
J Virol ; 97(8): e0014823, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37565749

RESUMO

Human cytomegalovirus (HCMV) is a beta herpesvirus that persists indefinitely in the human host through a latent infection. The polycistronic UL133-UL138 gene locus of HCMV encodes genes regulating latency and reactivation. While UL138 is pro-latency, restricting virus replication in CD34+ hematopoietic progenitor cells (HPCs), UL135 overcomes this restriction and is required for reactivation. By contrast, UL136 is expressed with later kinetics and encodes multiple proteins with differential roles in latency and reactivation. Like UL135, the largest UL136 isoform, UL136p33, is required for reactivation from latency in HPCs; viruses failing to express either protein are unresponsive to reactivation stimuli. Furthermore, UL136p33 is unstable, and its instability is important for the establishment of latency, and sufficient accumulation of UL136p33 is a checkpoint for reactivation. We hypothesized that stabilizing UL136p33 might overcome the requirement of UL135 for replication. We generated recombinant viruses lacking UL135 that expressed a stabilized variant of UL136p33. Stabilizing UL136p33 did not impact the replication of the UL135 mutant virus in fibroblasts. However, in the context of infection in HPCs, stabilization of UL136p33 strikingly compensated for the loss of UL135, resulting in increased replication in CD34+ HPCs and in humanized NOD-scid IL2Rγcnull (huNSG) mice. This finding suggests that while UL135 is essential for replication in HPCs, it functions largely at steps preceding the accumulation of UL136p33, and that stabilized expression of UL136p33 largely overcomes the requirement for UL135. Taken together, our genetic evidence indicates an epistatic relationship between UL136p33 and UL135, whereby UL135 may initiate events early in reactivation that drive the accumulation of UL136p33 to a threshold required for productive reactivation. IMPORTANCE Human cytomegalovirus (HCMV) is one of nine human herpesviruses and a significant human pathogen. While HCMV establishes a lifelong latent infection that is typically asymptomatic in healthy individuals, its reactivation from latency can have devastating consequences in the immunocompromised. Defining viral genes important in the establishment of or reactivation from latency is important to defining the molecular basis of latent and replicative states and in controlling infection and CMV disease. Here we define a genetic relationship between two viral genes in controlling virus reactivation from latency using primary human hematopoietic progenitor cells and humanized mouse models.


Assuntos
Citomegalovirus , Infecção Latente , Animais , Humanos , Camundongos , Antígenos CD34/genética , Antígenos CD34/metabolismo , Citomegalovirus/fisiologia , Camundongos Endogâmicos NOD , Proteínas Virais/genética , Proteínas Virais/metabolismo , Latência Viral , Replicação Viral
4.
Front Cell Infect Microbiol ; 13: 1189805, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346032

RESUMO

The human betaherpesviruses including human cytomegalovirus (HCMV), human herpesvirus (HHV)-6a and HHV-6b, and HHV-7 infect and establish latency in CD34+ hematopoietic stem and progenitor cells (HPCs). The diverse repertoire of HPCs in humans and the complex interactions between these viruses and host HPCs regulate the viral lifecycle, including latency. Precise manipulation of host and viral factors contribute to preferential maintenance of the viral genome, increased host cell survival, and specific manipulation of the cellular environment including suppression of neighboring cells and immune control. The dynamic control of these processes by the virus regulate inter- and intra-host signals critical to the establishment of chronic infection. Regulation occurs through direct viral protein interactions and cellular signaling, miRNA regulation, and viral mimics of cellular receptors and ligands, all leading to control of cell proliferation, survival, and differentiation. Hematopoietic stem cells have unique biological properties and the tandem control of virus and host make this a unique environment for chronic herpesvirus infection in the bone marrow. This review highlights the elegant complexities of the betaherpesvirus latency and HPC virus-host interactions.


Assuntos
Células-Tronco Hematopoéticas , MicroRNAs , Humanos , Citomegalovirus/genética , MicroRNAs/genética , Diferenciação Celular , Células Cultivadas
5.
bioRxiv ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36747736

RESUMO

Human cytomegalovirus (HCMV) is beta herpesvirus that persists indefinitely in the human host through a protracted, latent infection. The polycistronic UL133-UL138 gene locus of HCMV encodes genes regulating latency and reactivation. While UL138 is pro-latency, restricting virus replication in CD34+ hematopoietic progenitor cells (HPCs), UL135 overcomes this restriction for reactivation. By contrast, UL136 is expressed with later kinetics and encodes multiple protein isoforms with differential roles in latency and reactivation. Like UL135, the largest UL136 isoform, UL136p33, is required for reactivation from latency in hematopoietic cells. Furthermore, UL136p33 is unstable, and its instability is important for the establishment of latency and sufficient accumulation of UL136p33 is a checkpoint for reactivation. We hypothesized that stabilizing UL136p33 might overcome the requirement of UL135 for reactivation. To test this, we generated recombinant viruses lacking UL135 that expressed a stabilized variant of UL136p33. Stabilizing UL136p33 did not impact replication of the UL135-mutant virus in fibroblasts. However, in the context of infection in hematopoietic cells, stabilization of UL136p33 strikingly compensated for the loss of UL135, resulting in increased replication in CD34+ HPCs and in humanized NOD- scid IL2Rγ c null (NSG) mice. This finding suggests that while UL135 is essential for reactivation, it functions at steps preceding the accumulation of UL136p33 and that stabilized expression of UL136p33 largely overcomes the requirement for UL135 in reactivation. Taken together, our genetic evidence indicates an epistatic relationship between UL136p33 and UL135 whereby UL135 may initiate events early in reactivation that will result in the accumulation of UL136p33 to a threshold required for productive reactivation. SIGNIFICANCE: Human cytomegalovirus (HCMV) is one of nine human herpesviruses and a significant human pathogen. While HCMV establishes a life-long latent infection that is typically asymptomatic in healthy individuals, its reactivation from latency can have devastating consequences in the immune compromised. Defining virus-host and virus-virus interactions important for HCMV latency, reactivation and replication is critical to defining the molecular basis of latent and replicative states and in controlling infection and CMV disease. Here we define a genetic relationship between two viral genes in controlling virus reactivation from latency using primary human hematopoietic progenitor cell and humanized mouse models.

6.
Curr Protoc ; 2(12): e622, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36521018

RESUMO

Pluripotent human embryonic stem cell (hESC) lines are a valuable in vitro tool to differentiate specific cell lineages, including cells from all three germ layers, i.e., neuronal cells, myocytes, and hematopoietic cells, including progenitors (described here), lymphoid cells, and myeloid cells. However, dramatically different cell subtypes and functional properties of specific cells can arise depending on the differentiation technique used. We previously optimized hematopoietic stem cell differentiation from two different NIH-approved hESC lines to generate CD34+ hematopoietic progenitor cells (HPCs). Infection of these HPCs with a common herpesvirus (human cytomegalovirus) results in maintenance of viral latency, capability of viral reactivation, recapitulation of viral mutant phenotypes, and virus-induced myelosuppression of hematopoietic differentiation. However, different HPC subpopulations support different viral latency and reactivation phenotypes, and different hESC-to-HPC differentiation methods alter the ratio of stem cell subsets. In addition, differences in differentiation methods are dependent on both protocol/reagents and user techniques. Here, we report a simplified and optimized method to generate large numbers of CD34+ HPCs with consistent phenotypes and demonstrate a comparison of several common methods that can be used to control the ratio of available HPC subpopulations. A key aspect of this approach is that we achieve consistency in differentiation across users in different laboratories and, importantly, among newly trained individuals. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Maintenance of human embryonic stem cells (hESCs) Basic Protocol 2: Differentiation of hESCs to hematopoietic progenitor cells (HPCs) Basic Protocol 3: Downstream functional differentiation of hESC-derived HPCs to mature lineages Support Protocol 1: Freezing and testing frozen batches of hESCs Support Protocol 2: Counting hESCs Support Protocol 3: Phenotyping by flow cytometry.


Assuntos
Células-Tronco Embrionárias Humanas , Viroses , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Hematopoese , Células-Tronco Hematopoéticas , Antígenos CD34/genética , Diferenciação Celular , Viroses/metabolismo
7.
mBio ; 13(1): e0172421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012351

RESUMO

Human cytomegalovirus (HCMV) is a highly prevalent beta-herpesvirus and a significant cause of morbidity and mortality following hematopoietic and solid organ transplant, as well as the leading viral cause of congenital abnormalities. A key feature of the pathogenesis of HCMV is the ability of the virus to establish a latent infection in hematopoietic progenitor and myeloid lineage cells. The study of HCMV latency has been hampered by difficulties in obtaining and culturing primary cells, as well as an inability to quantitatively measure reactivating virus, but recent advances in both in vitro and in vivo models of HCMV latency and reactivation have led to a greater understanding of the interplay between host and virus. Key differences in established model systems have also led to controversy surrounding the role of viral gene products in latency establishment, maintenance, and reactivation. This review will discuss the details and challenges of various models including hematopoietic progenitor cells, monocytes, cell lines, and humanized mice. We highlight the utility and functional differences between these models and the necessary experimental design required to define latency and reactivation, which will help to generate a more complete picture of HCMV infection of myeloid-lineage cells.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Animais , Camundongos , Citomegalovirus/genética , Latência Viral/genética , Linhagem Celular , Células-Tronco Hematopoéticas , Ativação Viral/genética
8.
mBio ; 12(2)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824207

RESUMO

Human cytomegalovirus (HCMV) microRNAs play essential roles in latency and reactivation in CD34+ hematopoietic progenitor cells (HPCs) via regulation of viral and cellular gene expression. In the present study, we show that HCMV miR-US25-1 targets RhoA, a small GTPase required for CD34+ HPC self-renewal, proliferation, and hematopoiesis. Expression of miR-US25-1 impairs signaling through the nonmuscle myosin II light chain, which leads to a block in cytokinesis and an inhibition of proliferation. Moreover, infection with an HCMV mutant lacking miR-US25-1 resulted in increased proliferation of CD34+ HPCs and a decrease in the proportion of genome-containing cells at the end of latency culture. These observations provide a mechanism by which HCMV limits proliferation to maintain latent viral genomes in CD34+ HPCs.IMPORTANCE Each herpesvirus family establishes latency in a unique cell type. Since herpesvirus genomes are maintained as episomes, the virus needs to devise mechanisms to retain the latent genome during cell division. Alphaherpesviruses overcome this obstacle by infecting nondividing neurons, while gammaherpesviruses tether their genome to the host chromosome in dividing B cells. The betaherpesvirus human cytomegalovirus (HCMV) establishes latency in CD34+ hematopoietic progenitor cells (HPCs), but the mechanism used to maintain the viral genome is unknown. In this report, we demonstrate that HCMV miR-US25-1 downregulates expression of RhoA, a key cell cycle regulator, which results in inhibition of CD34+ HPC proliferation by blocking mitosis. Mutation of miR-US25-1 during viral infection results in enhanced cellular proliferation and a decreased frequency of genome-containing CD34+ HPCs. These results reveal a novel mechanism through which HCMV is able to regulate cell division to prevent viral genome loss during proliferation.


Assuntos
Antígenos CD34/genética , Proliferação de Células/genética , Citomegalovirus/genética , Genoma Viral , Células-Tronco Hematopoéticas/fisiologia , Interações Hospedeiro-Patógeno , MicroRNAs/genética , Latência Viral/genética , Proteína rhoA de Ligação ao GTP/genética , Antígenos CD34/imunologia , Antígenos CD34/metabolismo , Citomegalovirus/patogenicidade , Regulação para Baixo , Regulação da Expressão Gênica , Células HEK293 , Humanos , MicroRNAs/metabolismo , Mitose/genética , Transdução de Sinais/genética , Proteína rhoA de Ligação ao GTP/imunologia
9.
Methods Mol Biol ; 2244: 343-363, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33555595

RESUMO

Immunodeficient mice engrafted with human tissues provide a robust model for the in vivo investigation of human-restricted viruses such as human cytomegalovirus (HCMV). Several humanized mouse models have been developed and improved over the last 30 years. Here, we describe a protocol for the transplant of human hematopoietic stem cells with autologous fetal liver and thymic tissues into NOD.Cg-PrkdcscidIL2rγtm1Wjl mice to create a humanized bone marrow-liver-thymus model (huBLT) that can be infected with HCMV. The presence of human thymus allows the development of a functional human immune system, including HLA-restricted human T-cells and B-cells. Indeed, following infection, huBLT mice generate virus-specific CD4+ and CD8+ T-cell responses. Additionally, both HCMV-specific IgM and IgG B-cell responses can be detected. This huBLT model provides the first animal model to explore the adaptive human immune response to HCMV infection.


Assuntos
Citomegalovirus/imunologia , Modelos Animais de Doenças , Transplante de Células-Tronco Hematopoéticas/métodos , Imunidade Adaptativa/imunologia , Animais , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/imunologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
10.
mSphere ; 6(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33408225

RESUMO

Human cytomegalovirus (HCMV) infection of myeloid lineage cells, such as CD34+ hematopoietic progenitor cells (HPCs) or monocytes, results in the upregulation of antiapoptotic cellular proteins that protect the newly infected cells from programmed cell death. The mechanisms used by HCMV to regulate proapoptotic cellular proteins upon infection of CD34+ HPCs have not been fully explored. Here, we show that HCMV utilizes pUL7, a secreted protein that signals through the FLT3 receptor, and miR-US5-1 and miR-UL112-3p to reduce the abundance and activity of the proapoptotic transcription factor FOXO3a at early times after infection of CD34+ HPCs. Regulation of FOXO3a by pUL7, miR-US5-1, and miR-UL112 results in reduced expression of the proapoptotic BCL2L11 transcript and protection of CD34+ HPCs from virus-induced apoptosis. These data highlight the importance of both viral proteins and microRNAs (miRNAs) in protecting CD34+ HPCs from apoptosis at early times postinfection, allowing for the establishment of latency and maintenance of viral genome-containing cells.IMPORTANCE Human cytomegalovirus (HCMV) causes serious disease in immunocompromised individuals and is a significant problem during transplantation. The virus can establish a latent infection in CD34+ hematopoietic progenitor cells (HPCs) and periodically reactivate to cause disease in the absence of an intact immune system. What viral gene products are required for successful establishment of latency is still not fully understood. Here, we show that both a viral protein and viral miRNAs are required to prevent apoptosis after infection of CD34+ HPCs. HCMV pUL7 and miRNAs miR-US5-1 and miR-UL112-3p act to limit the expression and activation of the transcription factor FOXO3a, which in turn reduces expression of proapoptotic gene BCL2L11 and prevents virus-induced apoptosis in CD34+ HPCs.


Assuntos
Antígenos CD34/genética , Apoptose , Citomegalovirus/genética , Células-Tronco Hematopoéticas/virologia , MicroRNAs/genética , Proteínas da Matriz Viral/genética , Antígenos CD34/imunologia , Células Cultivadas , Fibroblastos/virologia , Células HEK293 , Células-Tronco Hematopoéticas/imunologia , Humanos , MicroRNAs/classificação
11.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177198

RESUMO

In human cytomegalovirus (HCMV)-seropositive patients, CD34+ hematopoietic progenitor cells (HPCs) provide an important source of latent virus that reactivates following cellular differentiation into tissue macrophages. Multiple groups have used primary CD34+ HPCs to investigate mechanisms of viral latency. However, analyses of mechanisms of HCMV latency have been hampered by the genetic variability of CD34+ HPCs from different donors, availability of cells, and low frequency of reactivation. In addition, multiple progenitor cell types express surface CD34, and the frequencies of these populations differ depending on the tissue source of the cells and culture conditions in vitro In this study, we generated CD34+ progenitor cells from two different embryonic stem cell (ESC) lines, WA01 and WA09, to circumvent limitations associated with primary CD34+ HPCs. HCMV infection of CD34+ HPCs derived from either WA01 or WA09 ESCs supported HCMV latency and induced myelosuppression similar to infection of primary CD34+ HPCs. Analysis of HCMV-infected primary or ESC-derived CD34+ HPC subpopulations indicated that HCMV was able to establish latency and reactivate in CD38+ CD90+ and CD38+/low CD90- HPCs but persistently infected CD38- CD90+ cells to produce infectious virus. These results indicate that ESC-derived CD34+ HPCs can be used as a model for HCMV latency and that the virus either latently or persistently infects specific subpopulations of CD34+ cells.IMPORTANCE Human cytomegalovirus infection is associated with severe disease in transplant patients and understanding how latency and reactivation occur in stem cell populations is essential to understand disease. CD34+ hematopoietic progenitor cells (HPCs) are a critical viral reservoir; however, these cells are a heterogeneous pool with donor-to-donor variation in functional, genetic, and phenotypic characteristics. We generated a novel system using embryonic stem cell lines to model HCMV latency and reactivation in HPCs with a consistent cellular background. Our study defined three key stem cell subsets with differentially regulated latent and replicative states, which provide cellular candidates for isolation and treatment of transplant-mediated disease. This work provides a direction toward developing strategies to control the switch between latency and reactivation.


Assuntos
Antígenos CD34/metabolismo , Infecções por Citomegalovirus/virologia , Citomegalovirus/isolamento & purificação , Células-Tronco Hematopoéticas/virologia , Interações Hospedeiro-Patógeno , Células-Tronco Embrionárias Humanas/virologia , Ativação Viral , Latência Viral , Células Cultivadas , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/patologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Transdução de Sinais
12.
Microorganisms ; 8(4)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268565

RESUMO

Human cytomegalovirus (HCMV) infection is a serious complication in hematopoietic stem cell transplant (HSCT) recipients due to virus-induced myelosuppression and impairment of stem cell engraftment. Despite the clear clinical link between myelosuppression and HCMV infection, little is known about the mechanism(s) by which the virus inhibits normal hematopoiesis because of the strict species specificity and the lack of surrogate animal models. In this study, we developed a novel humanized mouse model system that recapitulates the HCMV-mediated engraftment failure after hematopoietic cell transplantation. We observed significant alterations in the hematopoietic populations in peripheral lymphoid tissues following engraftment of a subset of HCMV+ CD34+ hematopoietic progenitor cells (HPCs) within the transplant, suggesting that a small proportion of HCMV-infected CD34+ HPCs can profoundly affect HPC differentiation in the bone marrow microenvironment. This model will be instrumental to gain insight into the fundamental mechanisms of HCMV myelosuppression after HSCT and provides a platform to assess novel treatment strategies.

13.
Bone ; 133: 115248, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31972314

RESUMO

Recent developments in in situ microscopy have enabled unparalleled resolution of the architecture of the bone marrow (BM) niche for murine hematopoietic stem and progenitor cells (HSPCs). However, the extent to which these observations can be extrapolated to human BM remains unknown. In humans, adipose tissue occupies a significant portion of the BM medullary cavity, making quantitative immunofluorescent analysis difficult due to lipid-mediated light scattering. In this study, we employed optical clearing, confocal microscopy and nearest neighbor analysis to determine the spatial distribution of CD34+ HSPCs in the BM in a translationally relevant rhesus macaque model. Immunofluorescent analysis revealed that femoral BM adipocytes are associated with the branches of vascular sinusoids, with half of HSPCs localizing in close proximity of the nearest BM adipocyte. Immunofluorescent microscopy and flow cytometric analysis demonstrate that BM adipose tissue exists as a multicellular niche consisted of adipocytes, endothelial cells, granulocytes, and macrophages. Analysis of BM adipose tissue conditioned media using liquid chromatography-tandem mass spectrometry revealed the presence of multiple bioactive proteins involved in regulation of hematopoiesis, inflammation, and bone development, with many predicted to reside inside microvesicles. Pretreatment of purified HSPCs with BM adipose tissue conditioned media, comprising soluble and exosomal/microvesicle-derived factors, led to enhanced proliferation and an increase in granulocyte-monocyte differentiation potential ex vivo. Our work extends extensive studies in murine models, indicating that BM adipose tissue is a central paracrine regulator of hematopoiesis in nonhuman primates and possibly in humans.


Assuntos
Medula Óssea , Transplante de Células-Tronco Hematopoéticas , Tecido Adiposo , Animais , Células da Medula Óssea , Células Endoteliais , Hematopoese , Células-Tronco Hematopoéticas , Macaca mulatta , Camundongos
14.
J Control Release ; 317: 291-299, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31770573

RESUMO

Previously identified as a key mediator of multidrug resistance, the drug efflux behavior of P-glycoprotein (P-gp) remains a prominent challenge in cancer treatment. P-gp belongs to the ATP-binding cassette transporter family of membrane proteins, and modulates the efflux of many drugs at the cell membrane, resulting in inadequate retention of chemotherapeutic drugs in cancer cells. Here, we explore the FDA-approved drug quinidine as a P-gp inhibitor. Although used clinically for the treatment of malaria, arrhythmia, and pseudobulbar effect, quinidine can induce acquired long QT syndrome and torsade de pointes through its interaction with the Purkinje fibers, which hinders its clinical application as a P-gp inhibitor. We hypothesize that the conjugation of quinidine to a polymer will permit its use as a P-gp inhibitor through mitigation of its distribution into the myocardium. Methoxypolyethylene glycol (mPEG) was conjugated to quinidine through a glycine linker, making a monovalent quinidine-polymer conjugate, which was then evaluated for its interactions with P-gp in vitro. The mPEG-glycine-quinidine conjugate retained its ability to inhibit the function of P-gp (log IC50 of 4.20 nM for quinidine and 4.61 nM for the mPEG-glycine-quinidine conjugate). Additionally, the distribution of quinidine into perfused mouse myocardium was decreased by almost an order of magnitude, strongly supporting our working hypothesis (2.28 × 10-3 µmol/g tissue for quinidine and ~4.10 × 10-4 µmol/g tissue for the conjugate). The results suggest the potential use of such polymer-drug conjugates to reverse multidrug resistance through P-gp inhibition and to mitigate the off-target pharmacologic effects that complicate their clinical use.


Assuntos
Resistência a Múltiplos Medicamentos , Neoplasias , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Animais , Resistencia a Medicamentos Antineoplásicos , Camundongos , Quinidina
15.
Cell Host Microbe ; 27(1): 104-114.e4, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31866424

RESUMO

Infection with human cytomegalovirus (HCMV) remains a significant cause of morbidity and mortality following hematopoietic stem cell transplant (HSCT) because of various hematologic problems, including myelosuppression. Here, we demonstrate that latently expressed HCMV miR-US5-2 downregulates the transcriptional repressor NGFI-A binding protein (NAB1) to induce myelosuppression of uninfected CD34+ hematopoietic progenitor cells (HPCs) through an increase in TGF-ß production. Infection of HPCs with an HCMVΔmiR-US5-2 mutant resulted in decreased TGF-ß expression and restoration of myelopoiesis. In contrast, we show that infected HPCs are refractory to TGF-ß signaling as another HCMV miRNA, miR-UL22A, downregulates SMAD3, which is required for maintenance of latency. Our data suggest that latently expressed viral miRNAs manipulate stem cell homeostasis by inducing secretion of TGF-ß while protecting infected HPCs from TGF-ß-mediated effects on viral latency and reactivation. These observations provide a mechanism through which HCMV induces global myelosuppression following HSCT while maintaining lifelong infection in myeloid lineage cells.


Assuntos
Citomegalovirus , Células-Tronco Hematopoéticas/virologia , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Latência Viral , Antígenos CD34/metabolismo , Células Cultivadas , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/metabolismo , Regulação para Baixo , Células HEK293 , Células-Tronco Hematopoéticas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Células Mieloides/metabolismo , Células Mieloides/virologia , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo , Ativação Viral , Latência Viral/genética , Latência Viral/fisiologia
16.
Sci Rep ; 9(1): 19236, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848362

RESUMO

Vaccines based on cytomegalovirus (CMV) demonstrate protection in animal models of infectious disease and cancer. Vaccine efficacy is associated with the ability of CMV to elicit and indefinitely maintain high frequencies of circulating effector memory T cells (TEM) providing continuous, life-long anti-pathogen immune activity. To allow for the clinical testing of human CMV (HCMV)-based vaccines we constructed and characterized as a vector backbone the recombinant molecular clone TR3 representing a wildtype genome. We demonstrate that TR3 can be stably propagated in vitro and that, despite species incompatibility, recombinant TR3 vectors elicit high frequencies of TEM to inserted antigens in rhesus macaques (RM). Live-attenuated versions of TR3 were generated by deleting viral genes required to counteract intrinsic and innate immune responses. In addition, we eliminated subunits of a viral pentameric glycoprotein complex thus limiting cell tropism. We show in a humanized mouse model that such modified vectors were able to establish persistent infection but lost their ability to reactivate from latency. Nevertheless, attenuated TR3 vectors preserved the ability to elicit and maintain TEM to inserted antigens in RM. We further demonstrate that attenuated TR3 can be grown in approved cell lines upon elimination of an anti-viral host factor using small interfering RNA, thus obviating the need for a complementing cell line. In sum, we have established a versatile platform for the clinical development of live attenuated HCMV-vectored vaccines and immunotherapies.


Assuntos
Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Citomegalovirus , Animais , Linhagem Celular Tumoral , Citomegalovirus/genética , Citomegalovirus/imunologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/genética , Vacinas contra Citomegalovirus/imunologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos NOD , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
17.
PLoS Pathog ; 15(11): e1007854, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725809

RESUMO

Reactivation of latent Human Cytomegalovirus (HCMV) in CD34+ hematopoietic progenitor cells (HPCs) is closely linked to hematopoiesis. Viral latency requires maintenance of the progenitor cell quiescence, while reactivation initiates following mobilization of HPCs to the periphery and differentiation into CD14+ macrophages. Early growth response gene 1 (EGR-1) is a transcription factor activated by Epidermal growth factor receptor (EGFR) signaling that is essential for the maintenance of CD34+ HPC self-renewal in the bone marrow niche. Down-regulation of EGR-1 results in mobilization and differentiation of CD34+ HPC from the bone marrow to the periphery. In the current study we demonstrate that the transcription factor EGR-1 is directly targeted for down-regulation by HCMV miR-US22 that results in decreased proliferation of CD34+ HPCs and a decrease in total hematopoietic colony formation. We also show that an HCMV miR-US22 mutant fails to reactivate in CD34+ HPCs, indicating that expression of EGR-1 inhibits viral reactivation. Since EGR-1 promotes CD34+ HPC self-renewal in the bone marrow niche, HCMV miR-US22 down-regulation of EGR-1 is a necessary step to block HPC self-renewal and proliferation to induce a cellular differentiation pathway necessary to promote reactivation of virus.


Assuntos
Proliferação de Células , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Células-Tronco Hematopoéticas/citologia , MicroRNAs/genética , Ativação Viral , Diferenciação Celular , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/genética , Hematopoese , Células-Tronco Hematopoéticas/virologia , Interações Hospedeiro-Patógeno , Humanos , Transdução de Sinais
18.
mBio ; 10(4)2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431555

RESUMO

Human cytomegalovirus (HCMV) infection of CD34+ hematopoietic progenitor cells (CD34+ HPCs) provides a critical reservoir of virus in stem cell transplant patients, and viral reactivation remains a significant cause of morbidity and mortality. The HCMV chemokine receptor US28 is implicated in the regulation of viral latency and reactivation. To explore the role of US28 signaling in latency and reactivation, we analyzed protein tyrosine kinase signaling in CD34+ HPCs expressing US28. US28-ligand signaling in CD34+ HPCs induced changes in key regulators of cellular activation and differentiation. In vitro latency and reactivation assays utilizing CD34+ HPCs indicated that US28 was required for viral reactivation but not latency establishment or maintenance. Similarly, humanized NSG mice (huNSG) infected with TB40E-GFP-US28stop failed to reactivate upon treatment with granulocyte-colony-stimulating factor, but viral genome levels were maintained. Interestingly, HCMV-mediated changes in hematopoiesis during latency in vivo and in vitro was also dependent upon US28, as US28 directly promoted differentiation toward the myeloid lineage. To determine whether US28 constitutive activity and/or ligand-binding activity were required for latency and reactivation, we infected both huNSG mice and CD34+ HPCs in vitro with HCMV TB40E-GFP containing the US28-R129A mutation (no CA) or Y16F mutation (no ligand binding). TB40E-GFP-US28-R129A was maintained during latency and exhibited normal reactivation kinetics. In contrast, TB40E-GFP-US28-Y16F exhibited high levels of viral genome during latency and reactivation, indicating that the virus did not establish latency. These data indicate that US28 is necessary for viral reactivation and ligand binding activity is required for viral latency, highlighting the complex role of US28 during HCMV latency and reactivation.IMPORTANCE Human cytomegalovirus (HCMV) can establish latency following infection of CD34+ hematopoietic progenitor cells (HPCs), and reactivation from latency is a significant cause of viral disease and accelerated graft failure in bone marrow and solid-organ transplant patients. The precise molecular mechanisms of HCMV infection in HPCs are not well defined; however, select viral gene products are known to regulate aspects of latency and reactivation. The HCMV-encoded chemokine receptor US28, which binds multiple CC chemokines as well as CX3CR1, is expressed both during latent and lytic phases of the virus life cycle and plays a role in latency and reactivation. However, the specific timing of US28 expression and the role of ligand binding in these processes are not well defined. In this report, we determined that US28 is required for reactivation but not for maintaining latency. However, when present during latency, US28 ligand binding activity is critical to maintaining the virus in a quiescent state. We attribute the regulation of both latency and reactivation to the role of US28 in promoting myeloid lineage cell differentiation. These data highlight the dynamic and multifunctional nature of US28 during HCMV latency and reactivation.


Assuntos
Antígenos CD34/metabolismo , Citomegalovirus/fisiologia , Células-Tronco Hematopoéticas/virologia , Ligantes , Receptores de Quimiocinas/metabolismo , Proteínas Virais/metabolismo , Latência Viral/fisiologia , Animais , Diferenciação Celular , Citomegalovirus/genética , Citomegalovirus/patogenicidade , Genoma Viral , Hematopoese , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Receptores de Quimiocinas/genética , Transdução de Sinais , Proteínas Virais/genética , Ativação Viral/genética , Ativação Viral/fisiologia
19.
mBio ; 9(2)2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691342

RESUMO

The ability of human cytomegalovirus (HCMV) to reactivate from latent infection of hematopoietic progenitor cells (HPCs) is intimately linked to cellular differentiation. HCMV encodes UL7 that our group has shown is secreted from infected cells and induces angiogenesis. In this study, we show that UL7 is a ligand for Fms-like tyrosine kinase 3 receptor (Flt-3R), a well-known critical factor in HPC differentiation. We observed that UL7 directly binds Flt-3R and induces downstream signaling cascades, including phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways. Importantly, we show that UL7 protein induces differentiation of both CD34+ HPCs and CD14+ monocytes. Last, we show that an HCMV mutant lacking UL7 fails to reactivate in CD34+ HPCs in vitro as well as in humanized mice. These observations define the first virally encoded differentiation factor with significant implications not only for HCMV reactivation but also for alteration of the hematopoietic compartment in transplant patients.IMPORTANCE Human cytomegalovirus (HCMV) remains a significant cause of morbidity and mortality in allogeneic hematopoietic stem cell transplant recipients. CD34+ hematopoietic progenitor cells (HPCs) represent a critical reservoir of latent HCMV in the transplant population, thereby providing a source of virus for dissemination to visceral organs. HCMV reactivation has been linked to HPC/myeloid cellular differentiation; however, the mechanisms involved in these events are poorly understood at the molecular level. In this study, we show that a viral protein is a ligand for Fms-like tyrosine kinase 3 receptor (Flt-3R) and that the binding of HCMV UL7 to the Flt-3R triggers HPC and monocyte differentiation. Moreover, the loss of UL7 prevents viral reactivation in HPCs in vitro as well as in humanized mice. These observations define the first virally encoded differentiation factor with significant implications not only for HCMV reactivation but also for alteration of the hematopoietic compartment in transplant patients.


Assuntos
Diferenciação Celular , Citomegalovirus/fisiologia , Glicoproteínas/metabolismo , Células-Tronco Hematopoéticas/virologia , Interações Hospedeiro-Patógeno , Proteínas do Envelope Viral/metabolismo , Ativação Viral , Tirosina Quinase 3 Semelhante a fms/metabolismo , Células Cultivadas , Humanos , Ligação Proteica , Transdução de Sinais
20.
Sci Rep ; 7(1): 937, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28428537

RESUMO

The strict species specificity of Human Cytomegalovirus (HCMV) has impeded our understanding of antiviral adaptive immune responses in the context of a human immune system. We have previously shown that HCMV infection of human hematopoietic progenitor cells engrafted in immune deficient mice (huNSG) results in viral latency that can be reactivated following G-CSF treatment. In this study, we characterized the functional human adaptive immune responses in HCMV latently-infected huBLT (humanized Bone marrow-Liver-Thymus) mice. Following infection, huBLT mice generate human effector and central memory CD4+ and CD8+ T-cell responses reactive to peptides corresponding to both IE and pp65 proteins. Additionally, both HCMV specific IgM and IgG B-cell responses with the ability to neutralize virus were detected. These results indicate that the HCMV huBLT mouse model may provide a valuable tool to study viral latency and reactivation as well as evaluate HCMV vaccines and immune responses in the context of a functional human immune system.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Animais , Anticorpos Antivirais/imunologia , Transplante de Medula Óssea , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Memória Imunológica , Transplante de Fígado , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Timo/transplante , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA