Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol Methods ; 448: 91-104, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28625864

RESUMO

We developed a homogeneous bridging anti-drug antibody (ADA) assay on an electro chemiluminescent immunoassay (ECLIA) platform to support the immunogenicity evaluation of a dimeric domain antibody (dAb) therapeutic in clinical studies. During method development we evaluated the impact of different types of acid at various pH levels on polyclonal and monoclonal ADA controls of differing affinities and on/off rates. The data shows for the first time that acids of different pH can have a differential effect on ADA of various affinities and this in turn impacts assay sensitivity and drug tolerance as defined by these surrogate controls. Acid treatment led to a reduction in signal of intermediate and low affinity ADA, but not high affinity or polyclonal ADA. We also found that acid pretreatment is a requisite for dissociation of drug bound high affinity ADA, but not for low affinity ADA-drug complexes. Although we were unable to identify an acid that would allow a 100% retrieval of ADA signal post-treatment, use of glycine pH3.0 enabled the detection of low, intermediate and high affinity antibodies (Abs) to various extents. Following optimization, the ADA assay method was validated for clinical sample analysis. Consistencies within various parameters of the clinical data such as dose dependent increases in ADA rates and titers were observed, indicating a reliable ADA method. Pre- and post-treatment ADA negative or positive clinical samples without detectable drug were reanalyzed in the absence of acid treatment or presence of added exogenous drug respectively to further assess the effectiveness of the final acid treatment procedure. The overall ADA results indicate that assay conditions developed and validated based on surrogate controls sufficed to provide a reliable clinical data set. The effect of low pH acid treatment on possible pre-existing ADA or soluble multimeric target in normal human serum was also evaluated, and preliminary data indicate that acid type and pH also affect drug-specific signal differentially in individual samples. The results presented here represent the most extensive analyses to date on acid treatment of a wide range of ADA affinities to explore sensitivity and drug tolerance issues. They have led to a refinement of our current best practices for ADA method development and provide a depth of data to interrogate low pH mediated immune complex dissociation.


Assuntos
Ácidos/química , Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Monoclonais/imunologia , Antineoplásicos/imunologia , Técnicas Eletroquímicas , Imunoensaio/métodos , Animais , Anticorpos Anti-Idiotípicos/sangue , Anticorpos Anti-Idiotípicos/química , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/química , Afinidade de Anticorpos , Especificidade de Anticorpos , Antineoplásicos/efeitos adversos , Antineoplásicos/sangue , Antineoplásicos/química , Sítios de Ligação de Anticorpos , Estabilidade de Medicamentos , Glicina/química , Humanos , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos BALB C , Valor Preditivo dos Testes , Ligação Proteica , Desnaturação Proteica , Estabilidade Proteica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA