Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961516

RESUMO

Receptor tyrosine kinase (RTK)-targeted therapies are often effective but invariably limited by drug resistance. A major mechanism of acquired resistance involves "bypass" switching to alternative pathways driven by non-targeted RTKs that restore proliferation. One such RTK is AXL whose overexpression, frequently observed in bypass resistant tumors, drives both cell survival and associated malignant phenotypes such as epithelial-to-mesenchymal (EMT) transition and migration. However, the signaling molecules and pathways eliciting these responses have remained elusive. To explore these coordinated effects, we generated a panel of mutant lung adenocarcinoma PC9 cell lines in which each AXL intracellular tyrosine residue was mutated to phenylalanine. By integrating measurements of phosphorylation signaling and other phenotypic changes associated with resistance through multivariate modeling, we mapped signaling perturbations to specific resistant phenotypes. Our results suggest that AXL signaling can be summarized into two clusters associated with progressive disease and poor clinical outcomes in lung cancer patients. These clusters displayed favorable Abl1 and SFK motifs and their phosphorylation was consistently decreased by dasatinib. High-throughput kinase specificity profiling showed that AXL likely activates the SFK cluster through FAK1 which is known to complex with Src. Moreover, the SFK cluster overlapped with a previously established focal adhesion kinase (FAK1) signature conferring EMT-mediated erlotinib resistance in lung cancer cells. Finally, we show that downstream of this kinase signaling, AXL and YAP form a positive feedback loop that sustains drug tolerant persister cells. Altogether, this work demonstrates an approach for dissecting signaling regulators by which AXL drives erlotinib resistance-associated phenotypic changes.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36321161

RESUMO

Cancer drug response is heavily influenced by the extracellular matrix (ECM) environment. Despite a clear appreciation that the ECM influences cancer drug response and progression, a unified view of how, where, and when environment-mediated drug resistance contributes to cancer progression has not coalesced. Here, we survey some specific ways in which the ECM contributes to cancer resistance with a focus on how materials development can coincide with systems biology approaches to better understand and perturb this contribution. We argue that part of the reason that environment-mediated resistance remains a perplexing problem is our lack of a wholistic view of the entire range of environments and their impacts on cell behavior. We cover a series of recent experimental and computational tools that will aid exploration of ECM reactions space, and how they might be synergistically integrated.

3.
Cell Rep Methods ; 2(2)2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35360705

RESUMO

Cell signaling is orchestrated in part through a network of protein kinases and phosphatases. Dysregulation of kinase signaling is widespread in diseases such as cancer and is readily targetable through inhibitors. Mass spectrometry-based analysis can provide a global view of kinase regulation, but mining these data is complicated by its stochastic coverage of the proteome, measurement of substrates rather than kinases, and the scale of the data. Here, we implement a dual data and motif clustering (DDMC) strategy that simultaneously clusters peptides into similarly regulated groups based on their variation and their sequence profile. We show that this can help to identify putative upstream kinases and supply more robust clustering. We apply this clustering to clinical proteomic profiling of lung cancer and identify conserved proteomic signatures of tumorigenicity, genetic mutations, and immune infiltration. We propose that DDMC provides a general and flexible clustering strategy for the analysis of phosphoproteomic data.


Assuntos
Neoplasias Pulmonares , Proteômica , Humanos , Fosfoproteínas/genética , Transdução de Sinais/fisiologia , Análise por Conglomerados
4.
Mol Cancer Res ; 20(4): 542-555, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022314

RESUMO

To better understand the signaling complexity of AXL, a member of the tumor-associated macrophage (TAM) receptor tyrosine kinase family, we created a physical and functional map of AXL signaling interactions, phosphorylation events, and target-engagement of three AXL tyrosine kinase inhibitors (TKI). We assessed AXL protein complexes using proximity-dependent biotinylation (BioID), effects of AXL TKI on global phosphoproteins using mass spectrometry, and target engagement of AXL TKI using activity-based protein profiling. BioID identifies AXL-interacting proteins that are mostly involved in cell adhesion/migration. Global phosphoproteomics show that AXL inhibition decreases phosphorylation of peptides involved in phosphatidylinositol-mediated signaling and cell adhesion/migration. Comparison of three AXL inhibitors reveals that TKI RXDX-106 inhibits pAXL, pAKT, and migration/invasion of these cells without reducing their viability, while bemcentinib exerts AXL-independent phenotypic effects on viability. Proteomic characterization of these TKIs demonstrates that they inhibit diverse targets in addition to AXL, with bemcentinib having the most off-targets. AXL and EGFR TKI cotreatment did not reverse resistance in cell line models of erlotinib resistance. However, a unique vulnerability was identified in one resistant clone, wherein combination of bemcentinib and erlotinib inhibited cell viability and signaling. We also show that AXL is overexpressed in approximately 30% to 40% of nonsmall but rarely in small cell lung cancer. Cell lines have a wide range of AXL expression, with basal activation detected rarely. IMPLICATIONS: Our study defines mechanisms of action of AXL in lung cancers which can be used to establish assays to measure drug targetable active AXL complexes in patient tissues and inform the strategy for targeting it's signaling as an anticancer therapy.


Assuntos
Neoplasias Pulmonares , Proteômica , Linhagem Celular Tumoral , Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteômica/métodos , Transdução de Sinais
5.
Cell Syst ; 7(4): 371-383.e4, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30243563

RESUMO

The functional diversity of kinases enables specificity in cellular signal transduction. Yet how more than 500 members of the human kinome specifically receive regulatory inputs and convey information to appropriate substrates-all while using the common signaling output of phosphorylation-remains enigmatic. Here, we perform statistical co-evolution analysis, mutational scanning, and quantitative live-cell assays to reveal a hierarchical organization of the kinase domain that facilitates the orthogonal evolution of regulatory inputs and substrate outputs while maintaining catalytic function. We find that three quasi-independent "sectors"-groups of evolutionarily coupled residues-represent functional units in the kinase domain that encode for catalytic activity, substrate specificity, and regulation. Sector positions impact both disease and pharmacology: the catalytic sector is significantly enriched for somatic cancer mutations, and residues in the regulatory sector interact with allosteric kinase inhibitors. We propose that this functional architecture endows the kinase domain with inherent regulatory plasticity.


Assuntos
Domínio Catalítico , Evolução Molecular , Proteínas Quinases/química , Regulação Alostérica , Sítio Alostérico , Humanos , Mutação , Neoplasias/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA