Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Hum Genet ; 111(1): 96-118, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181735

RESUMO

PPFIA3 encodes the protein-tyrosine phosphatase, receptor-type, F-polypeptide-interacting-protein-alpha-3 (PPFIA3), which is a member of the LAR-protein-tyrosine phosphatase-interacting-protein (liprin) family involved in synapse formation and function, synaptic vesicle transport, and presynaptic active zone assembly. The protein structure and function are evolutionarily well conserved, but human diseases related to PPFIA3 dysfunction are not yet reported in OMIM. Here, we report 20 individuals with rare PPFIA3 variants (19 heterozygous and 1 compound heterozygous) presenting with developmental delay, intellectual disability, hypotonia, dysmorphisms, microcephaly or macrocephaly, autistic features, and epilepsy with reduced penetrance. Seventeen unique PPFIA3 variants were detected in 18 families. To determine the pathogenicity of PPFIA3 variants in vivo, we generated transgenic fruit flies producing either human wild-type (WT) PPFIA3 or five missense variants using GAL4-UAS targeted gene expression systems. In the fly overexpression assays, we found that the PPFIA3 variants in the region encoding the N-terminal coiled-coil domain exhibited stronger phenotypes compared to those affecting the C-terminal region. In the loss-of-function fly assay, we show that the homozygous loss of fly Liprin-α leads to embryonic lethality. This lethality is partially rescued by the expression of human PPFIA3 WT, suggesting human PPFIA3 function is partially conserved in the fly. However, two of the tested variants failed to rescue the lethality at the larval stage and one variant failed to rescue lethality at the adult stage. Altogether, the human and fruit fly data reveal that the rare PPFIA3 variants are dominant-negative loss-of-function alleles that perturb multiple developmental processes and synapse formation.


Assuntos
Proteínas de Drosophila , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Animais , Humanos , Alelos , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular , Transtornos do Neurodesenvolvimento/genética , Proteínas Tirosina Fosfatases
2.
Hum Mol Genet ; 32(20): 2981-2995, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37531237

RESUMO

Protein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including tone, gait and cerebellar abnormalities. PPP1R3F variants segregated with disease in affected hemizygous males that inherited the variants from their heterozygous carrier mothers. We show that PPP1R3F is predominantly expressed in brain astrocytes and localizes to the endoplasmic reticulum in cells. Glycogen content in PPP1R3F knockout astrocytoma cells appears to be more sensitive to fluxes in extracellular glucose levels than in wild-type cells, suggesting that PPP1R3F functions in maintaining steady brain glycogen levels under changing glucose conditions. We performed functional studies on nine of the identified variants and observed defects in PP1 binding, protein stability, subcellular localization and regulation of glycogen metabolism in most of them. Collectively, the genetic and molecular data indicate that deleterious variants in PPP1R3F are associated with a new X-linked disorder of glycogen metabolism, highlighting the critical role of GTSs in neurological development. This research expands our understanding of neurodevelopmental disorders and the role of PP1 in brain development and proper function.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Masculino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteína Fosfatase 1/genética , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Glucose , Glicogênio , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/complicações
3.
Pediatr Pulmonol ; 58(11): 3095-3105, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37560881

RESUMO

INTRODUCTION: Fibroblast growth factor 10 (FGF10) is a signaling molecule with a well-established role for lung branching morphogenesis. Rare heterozygous, deleterious variants in the FGF10 gene are known causes of the lacrimo-auriculo-dento-digital (LADD) syndrome and aplasia of lacrimal and salivary glands. Previous studies indicate that pathogenic variants in FGF10 can cause childhood Interstitial Lung Disease (chILD) due to severe diffuse developmental disorders of the lung, but detailed reports on clinical presentation and follow-up of affected children are lacking. METHODS: We describe four children with postnatal onset of chILD and heterozygous variants in FGF10, each detected by exome or whole genome sequencing. RESULTS: All children presented with postnatal respiratory failure. Two children died within the first 2 days of life, one patient died at age of 12 years due to right heart failure related to severe pulmonary hypertension (PH) and one patient is alive at age of 6 years, but still symptomatic. Histopathological analysis of lung biopsies from the two children with early postpartum demise revealed diffuse developmental disorder representing acinar dysplasia and interstitial fibrosis. Sequential biopsies of the child with survival until the age of 12 years revealed alveolar simplification and progressive interstitial fibrosis. DISCUSSION: Our report extends the phenotype of FGF10-related disorders to early onset chILD with progressive interstitial lung fibrosis and PH. Therefore, FGF10-related disorder should be considered even without previously described syndromic stigmata in children with postnatal respiratory distress, not only when leading to death in the neonatal period but also in case of persistent respiratory complaints and PH.


Assuntos
Doenças do Aparelho Lacrimal , Doenças Pulmonares Intersticiais , Criança , Humanos , Recém-Nascido , Fator 10 de Crescimento de Fibroblastos/genética , Fibrose , Doenças do Aparelho Lacrimal/genética , Pulmão , Doenças Pulmonares Intersticiais/genética
4.
medRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37034625

RESUMO

PPFIA3 encodes the Protein-Tyrosine Phosphatase, Receptor-Type, F Polypeptide-Interacting Protein Alpha-3 (PPFIA3), which is a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin) family involved in synaptic vesicle transport and presynaptic active zone assembly. The protein structure and function are well conserved in both invertebrates and vertebrates, but human diseases related to PPFIA3 dysfunction are not yet known. Here, we report 14 individuals with rare mono-allelic PPFIA3 variants presenting with features including developmental delay, intellectual disability, hypotonia, autism, and epilepsy. To determine the pathogenicity of PPFIA3 variants in vivo , we generated transgenic fruit flies expressing either human PPFIA3 wildtype (WT) or variant protein using GAL4-UAS targeted gene expression systems. Ubiquitous expression with Actin-GAL4 showed that the PPFIA3 variants had variable penetrance of pupal lethality, eclosion defects, and anatomical leg defects. Neuronal expression with elav-GAL4 showed that the PPFIA3 variants had seizure-like behaviors, motor defects, and bouton loss at the 3 rd instar larval neuromuscular junction (NMJ). Altogether, in the fly overexpression assays, we found that the PPFIA3 variants in the N-terminal coiled coil domain exhibited stronger phenotypes compared to those in the C-terminal region. In the loss-of-function fly assay, we show that the homozygous loss of fly Liprin- α leads to embryonic lethality. This lethality is partially rescued by the expression of human PPFIA3 WT, suggesting human PPFIA3 protein function is partially conserved in the fly. However, the PPFIA3 variants failed to rescue lethality. Altogether, the human and fruit fly data reveal that the rare PPFIA3 variants are dominant negative loss-of-function alleles that perturb multiple developmental processes and synapse formation.

5.
Mov Disord ; 37(8): 1707-1718, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35699229

RESUMO

BACKGROUND: Variants in genes of the nucleotide excision repair (NER) pathway have been associated with heterogeneous clinical presentations ranging from xeroderma pigmentosum to Cockayne syndrome and trichothiodystrophy. NER deficiencies manifest with photosensitivity and skin cancer, but also developmental delay and early-onset neurological degeneration. Adult-onset neurological features have been reported in only a few xeroderma pigmentosum cases, all showing at least mild skin manifestations. OBJECTIVE: The aim of this multicenter study was to investigate the frequency and clinical features of patients with biallelic variants in NER genes who are predominantly presenting with neurological signs. METHODS: In-house exome and genome datasets of 14,303 patients, including 3543 neurological cases, were screened for deleterious variants in NER-related genes. Clinical workup included in-depth neurological and dermatological assessments. RESULTS: We identified 13 patients with variants in ERCC4 (n = 8), ERCC2 (n = 4), or XPA (n = 1), mostly proven biallelic, including five different recurrent and six novel variants. All individuals had adult-onset progressive neurological deterioration with ataxia, dementia, and frequently chorea, neuropathy, and spasticity. Brain magnetic resonance imaging showed profound global brain atrophy in all patients. Dermatological examination did not show any skin cancer or pronounced ultraviolet damage. CONCLUSIONS: We introduce NERDND as adult-onset neurodegeneration (ND ) within the spectrum of autosomal recessive NER disorders (NERD). Our study demonstrates that NERDND is probably an underdiagnosed cause of neurodegeneration in adulthood and should be considered in patients with overlapping cognitive and movement abnormalities. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Síndrome de Cockayne , Neoplasias Cutâneas , Xeroderma Pigmentoso , Adulto , Síndrome de Cockayne/complicações , Síndrome de Cockayne/genética , Reparo do DNA/genética , Humanos , Pele , Neoplasias Cutâneas/genética , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
6.
Eur J Med Genet ; 65(7): 104533, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35640862

RESUMO

PTEN germline variants cause PTEN Hamartoma Tumour Syndrome (PHTS). Of individuals fulfilling diagnostic criteria, 41-88% test negative for PTEN germline variants, while mosaicism could be an explanation. Here we describe two individuals with PTEN mosaicism. First, a 21-year-old female presented with macrocephaly and a venous malformation. Next generation sequencing analysis on her venous malformation identified the mosaic pathogenic PTEN variant c.493-2A>G (23%). This variant was initially missed in blood due to low frequency (<1%), but detected in buccal swab (21%). Second, a 13-year-old male presented with macrocephaly, language developmental delay, behavioral problems, and an acral hyperkeratotic papule. Targeted PTEN analysis identified the mosaic pathogenic variant c.284C>T (11%) in blood, which was confirmed via buccal swab. These two cases suggest that PTEN mosaicism might be more common than currently reported. PTEN mosaicism awareness is important to enable diagnosis, which facilitates timely inclusion in cancer surveillance programs improving prognosis and life expectancy.


Assuntos
Síndrome do Hamartoma Múltiplo , Megalencefalia , Adolescente , Adulto , Criança , Deficiências do Desenvolvimento , Feminino , Síndrome do Hamartoma Múltiplo/diagnóstico , Síndrome do Hamartoma Múltiplo/genética , Síndrome do Hamartoma Múltiplo/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mosaicismo , PTEN Fosfo-Hidrolase/genética , Adulto Jovem
7.
Clin Neuroradiol ; 27(4): 481-483, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28643035

RESUMO

Neurodegeneration with brain iron accumulation (NBIA) is a heterogeneous group of inherited neurologic disorders with iron accumulation in the basal ganglia, which share magnetic resonance (MR) imaging characteristics, histopathologic and clinical features. According to the affected basal nuclei, clinical features include extrapyramidal movement disorders and varying degrees of intellectual disability status. The most common NBIA subtype is caused by pathogenic variants in PANK2. The hallmark of MR imaging in patients with PANK2 mutations is an eye-of-the-tiger sign in the globus pallidus. We report a 33-year-old female with a rare subtype of NBIA, called beta-propeller protein-associated neurodegeneration (BPAN) with a hitherto unknown missense variant in WDR45. She presented with BPAN's particular biphasic course of neurological symptoms and with a dominant iron accumulation in the midbrain that enclosed a spotty T2-hyperintensity.


Assuntos
Distúrbios do Metabolismo do Ferro/diagnóstico por imagem , Distrofias Neuroaxonais/diagnóstico por imagem , Adulto , Encéfalo , Proteínas de Transporte/genética , Feminino , Humanos , Ferro , Distúrbios do Metabolismo do Ferro/complicações , Distúrbios do Metabolismo do Ferro/genética , Imageamento por Ressonância Magnética , Mutação de Sentido Incorreto , Distrofias Neuroaxonais/complicações , Distrofias Neuroaxonais/genética , Neurodegeneração Associada a Pantotenato-Quinase
8.
J Neurol Sci ; 349(1-2): 105-9, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25592411

RESUMO

BACKGROUND: Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of diseases presenting with movement disorders and brain iron deposits. In addition to NBIA subtypes caused by mutations in PANK2 and PLA2G6, mutations in the C19orf12 gene were recently described as the third frequent cause of NBIA (called mitochondrial membrane protein-associated neurodegeneration, MPAN). Additionally, the X-linked gene WDR45 was found causative for a special subtype named static encephalopathy in childhood with neurodegeneration in adulthood (also called BPAN); however, analysis of this gene in a broader spectrum of NBIA has not been reported yet. METHODS: In a heterogeneous cohort of 69 patients with suspected NBIA that did not carry mutations in PANK2 and PLA2G6, the coding region of C19orf12 was evaluated by Sanger sequencing. The WDR45 gene was analyzed via high resolution melting and subsequent sequence analysis. RESULTS: Previously described homozygous C19orf12 mutations were found in 3/69 NBIA patients (4.3%). Analysis of the WDR45 gene revealed a novel heterozygous missense mutation in one female NBIA patient showing psychomotor retardation with secondary decline. CONCLUSIONS: C19orf12 mutations were confirmed in our heterogeneous NBIA cohort, while WDR45 mutations appear to be restricted to the subtype showing encephalopathy in childhood with neurodegeneration in adulthood.


Assuntos
Encéfalo/patologia , Proteínas de Transporte/genética , Ferro/metabolismo , Doenças Neurodegenerativas/genética , Adolescente , Adulto , Criança , Feminino , Fosfolipases A2 do Grupo VI/genética , Heterozigoto , Humanos , Masculino , Mutação de Sentido Incorreto , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fatores de Risco , Adulto Jovem
9.
Hum Genet ; 134(1): 97-109, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326669

RESUMO

Recently, de novo heterozygous loss-of-function mutations in beta-catenin (CTNNB1) were described for the first time in four individuals with intellectual disability (ID), microcephaly, limited speech and (progressive) spasticity, and functional consequences of CTNNB1 deficiency were characterized in a mouse model. Beta-catenin is a key downstream component of the canonical Wnt signaling pathway. Somatic gain-of-function mutations have already been found in various tumor types, whereas germline loss-of-function mutations in animal models have been shown to influence neuronal development and maturation. We report on 16 additional individuals from 15 families in whom we newly identified de novo loss-of-function CTNNB1 mutations (six nonsense, five frameshift, one missense, two splice mutation, and one whole gene deletion). All patients have ID, motor delay and speech impairment (both mostly severe) and abnormal muscle tone (truncal hypotonia and distal hypertonia/spasticity). The craniofacial phenotype comprised microcephaly (typically -2 to -4 SD) in 12 of 16 and some overlapping facial features in all individuals (broad nasal tip, small alae nasi, long and/or flat philtrum, thin upper lip vermillion). With this detailed phenotypic characterization of 16 additional individuals, we expand and further establish the clinical and mutational spectrum of inactivating CTNNB1 mutations and thereby clinically delineate this new CTNNB1 haploinsufficiency syndrome.


Assuntos
Deficiência Intelectual/genética , Microcefalia/genética , Mutação/genética , beta Catenina/genética , Criança , Pré-Escolar , Feminino , Seguimentos , Haploinsuficiência , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia , Fenótipo , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA