Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 606, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242884

RESUMO

Hematopoietic mutations in epigenetic regulators like DNA methyltransferase 3 alpha (DNMT3A), play a pivotal role in driving clonal hematopoiesis of indeterminate potential (CHIP), and are associated with unfavorable outcomes in patients suffering from heart failure (HF). However, the precise interactions between CHIP-mutated cells and other cardiac cell types remain unknown. Here, we identify fibroblasts as potential partners in interactions with CHIP-mutated monocytes. We used combined transcriptomic data derived from peripheral blood mononuclear cells of HF patients, both with and without CHIP, and cardiac tissue. We demonstrate that inactivation of DNMT3A in macrophages intensifies interactions with cardiac fibroblasts and increases cardiac fibrosis. DNMT3A inactivation amplifies the release of heparin-binding epidermal growth factor-like growth factor, thereby facilitating activation of cardiac fibroblasts. These findings identify a potential pathway of DNMT3A CHIP-driver mutations to the initiation and progression of HF and may also provide a compelling basis for the development of innovative anti-fibrotic strategies.


Assuntos
DNA Metiltransferase 3A , Insuficiência Cardíaca , Humanos , Hematopoiese Clonal , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A/genética , Fibroblastos , Fibrose/genética , Fibrose/patologia , Insuficiência Cardíaca/genética , Hematopoese/genética , Leucócitos Mononucleares , Mutação , Cardiopatias/genética , Cardiopatias/patologia
2.
Ann Hematol ; 102(10): 2903-2908, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37552323

RESUMO

The addition of midostaurin to standard chemotherapy has improved survival in patients with FLT3-mutated AML. However, the impact of midostaurin and other FLT3 inhibitors (FLT3i) on cardiovascular adverse events (CAEs) has not been studied in patients who underwent allogeneic hematopoietic stem cell transplantation in a real-world setting. We reviewed 132 patients with AML who were treated with intensive induction therapy and consecutive allogeneic stem cell transplantation at our institution (42 FLT3-mutated AML and 90 with FLT3 wildtype). We identified treatment with midostaurin and/or FLT3i as an independent risk factor for CAEs not resulting in higher non-relapse mortality (NRM) or impaired overall survival (OS). Hence, close monitoring for CAEs is warranted for these patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Estaurosporina/efeitos adversos , Inibidores de Proteínas Quinases/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Tirosina Quinase 3 Semelhante a fms/genética
3.
Nat Cardiovasc Res ; 2(9): 819-834, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39196061

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is caused by somatic mutations in hematopoietic stem cells and associates with worse prognosis in patients with heart failure. Patients harboring CHIP mutations show enhanced inflammation. However, whether these signatures are derived from the relatively low number of cells harboring mutations or are indicators of systemic pro-inflammatory activation that is associated with CHIP is unclear. Here we assess the cell-intrinsic effects of CHIP mutant cells in patients with heart failure. Using an improved single-cell sequencing pipeline (MutDetect-Seq), we show that DNMT3A mutant monocytes, CD4+ T cells and NK cells exhibit altered gene expression profiles. While monocytes showed increased genes associated with inflammation and phagocytosis, T cells and NK cells present increased activation signatures and effector functions. Increased paracrine signaling pathways are predicted and validated between mutant and wild-type monocytes and T cells, which amplify inflammatory circuits. Altogether, these data provide novel insights into how CHIP might promote a worse prognosis in patients with heart failure.


Assuntos
Linfócitos T CD4-Positivos , Hematopoiese Clonal , DNA Metiltransferase 3A , Insuficiência Cardíaca , Monócitos , Mutação , Humanos , Insuficiência Cardíaca/genética , Hematopoiese Clonal/genética , Monócitos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Matadoras Naturais/imunologia , Comunicação Parácrina , Análise de Célula Única , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Masculino , Feminino , Transcriptoma , Pessoa de Meia-Idade , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Idoso , Fenótipo , Fagocitose/genética
4.
Nat Cardiovasc Res ; 2(12): 1277-1290, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38344689

RESUMO

After myocardial infarction (MI), emergency hematopoiesis produces inflammatory myeloid cells that accelerate atherosclerosis and promote heart failure. Since the balance between glycolysis and mitochondrial metabolism regulates hematopoietic stem cell homeostasis, metabolic cues may influence emergency myelopoiesis. Here, we show in humans and female mice that hematopoietic progenitor cells increase fatty acid metabolism after MI. Blockade of fatty acid oxidation by deleting carnitine palmitoyltransferase (Cpt1A) in hematopoietic cells of Vav1Cre/+Cpt1Afl/fl mice limited hematopoietic progenitor proliferation and myeloid cell expansion after MI. We also observed reduced bone marrow adiposity in humans, pigs and mice following MI. Inhibiting lipolysis in adipocytes using AdipoqCreERT2Atglfl/fl mice or local depletion of bone marrow adipocytes in AdipoqCreERT2iDTR mice also curbed emergency hematopoiesis. Furthermore, systemic and regional sympathectomy prevented bone marrow adipocyte shrinkage after MI. These data establish a critical role for fatty acid metabolism in post-MI emergency hematopoiesis.

5.
Nat Cardiovasc Res ; 1(1): 28-44, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35747128

RESUMO

Abnormal hematopoiesis advances cardiovascular disease by generating excess inflammatory leukocytes that attack the arteries and the heart. The bone marrow niche regulates hematopoietic stem cell proliferation and hence the systemic leukocyte pool, but whether cardiovascular disease affects the hematopoietic organ's microvasculature is unknown. Here we show that hypertension, atherosclerosis and myocardial infarction (MI) instigate endothelial dysfunction, leakage, vascular fibrosis and angiogenesis in the bone marrow, altogether leading to overproduction of inflammatory myeloid cells and systemic leukocytosis. Limiting angiogenesis with endothelial deletion of Vegfr2 (encoding vascular endothelial growth factor (VEGF) receptor 2) curbed emergency hematopoiesis after MI. We noted that bone marrow endothelial cells assumed inflammatory transcriptional phenotypes in all examined stages of cardiovascular disease. Endothelial deletion of Il6 or Vcan (encoding versican), genes shown to be highly expressed in mice with atherosclerosis or MI, reduced hematopoiesis and systemic myeloid cell numbers in these conditions. Our findings establish that cardiovascular disease remodels the vascular bone marrow niche, stimulating hematopoiesis and production of inflammatory leukocytes.

6.
ESC Heart Fail ; 8(3): 1873-1884, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33779075

RESUMO

AIMS: Somatic mutations in haematopoietic stem cells can lead to the clonal expansion of mutated blood cells, known as clonal haematopoiesis (CH). Mutations in the most prevalent driver genes DNMT3A and TET2 with a variant allele frequency (VAF) ≥ 2% have been associated with atherosclerosis and chronic heart failure of ischemic origin (CHF). However, the effects of mutations in other driver genes for CH with low VAF (<2%) on CHF are still unknown. METHODS AND RESULTS: Therefore, we analysed mononuclear bone marrow and blood cells from 399 CHF patients by deep error-corrected targeted sequencing of 56 genes and associated mutations with the long-term mortality in these patients (3.95 years median follow-up). We detected 1113 mutations with a VAF ≥ 0.5% in 347 of 399 patients, and only 13% had no detectable CH. Despite a high prevalence of mutations in the most frequently mutated genes DNMT3A (165 patients) and TET2 (107 patients), mutations in CBL, CEBPA, EZH2, GNB1, PHF6, SMC1A, and SRSF2 were associated with increased death compared with the average death rate of all patients. To avoid confounding effects, we excluded patients with DNMT3A-related, TET2-related, and other clonal haematopoiesis of indeterminate potential (CHIP)-related mutations with a VAF ≥ 2% for further analyses. Kaplan-Meier survival analyses revealed a significantly higher mortality in patients with mutations in either of the seven genes (53 patients), combined as the CH-risk gene set for CHF. Baseline patient characteristics showed no significant differences in any parameter including patient age, confounding diseases, severity of CHF, or blood cell parameters except for a reduced number of platelets in patients with mutations in the risk gene set in comparison with patients without. However, carrying a mutation in any of the risk genes remained significant after multivariate cox regression analysis (hazard ratio, 3.1; 95% confidence interval, 1.8-5.4; P < 0.001), whereas platelet numbers did not. CONCLUSIONS: Somatic mutations with low VAF in a distinct set of genes, namely, in CBL, CEBPA, EZH2, GNB1, PHF6, SMC1A, and SRSF2, are significantly associated with mortality in CHF, independently of the most prevalent CHIP-mutations in DNMT3A and TET2. Mutations in these genes are prevalent in young CHF patients and comprise an independent risk factor for the outcome of CHF, potentially providing a novel tool for risk assessment in CHF.


Assuntos
Hematopoiese Clonal , Insuficiência Cardíaca , Proteínas de Ligação a DNA/genética , Insuficiência Cardíaca/genética , Humanos , Mutação , Proteínas Proto-Oncogênicas/genética
7.
Eur Heart J ; 42(3): 257-265, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33241418

RESUMO

AIMS: Somatic mutations of the epigenetic regulators DNMT3A and TET2 causing clonal expansion of haematopoietic cells (clonal haematopoiesis; CH) were shown to be associated with poor prognosis in chronic ischaemic heart failure (CHF). The aim of our analysis was to define a threshold of variant allele frequency (VAF) for the prognostic significance of CH in CHF. METHODS AND RESULTS: We analysed bone marrow and peripheral blood-derived cells from 419 patients with CHF by error-corrected amplicon sequencing. Cut-off VAFs were optimized by maximizing sensitivity plus specificity from a time-dependent receiver operating characteristic (ROC) curve analysis from censored data. 56.2% of patients were carriers of a DNMT3A- (N = 173) or a TET2- (N = 113) mutation with a VAF >0.5%, with 59 patients harbouring mutations in both genes. Survival ROC analyses revealed an optimized cut-off value of 0.73% for TET2- and 1.15% for DNMT3A-CH-driver mutations. Five-year-mortality was 18% in patients without any detected DNMT3A- or TET2 mutation (VAF < 0.5%), 29% with only one DNMT3A- or TET2-CH-driver mutations above the respective cut-off level and 42% in patients harbouring both DNMT3A- and TET2-CH-driver mutations above the respective cut-off levels. In carriers of a DNMT3A mutation with VAF ≥ 1.15%, 5-year mortality was 31%, compared with 18% mortality in those with VAF < 1.15% (P = 0.048). Likewise, in patients with TET2 mutations, 5-year mortality was 32% with VAF ≥ 0.73%, compared with 19% mortality with VAF < 0.73% (P = 0.029). CONCLUSION: The present study defines novel threshold levels for clone size caused by acquired somatic mutations in the CH-driver genes DNMT3A and TET2 that are associated with worse outcome in patients with CHF.


Assuntos
Hematopoiese Clonal , Insuficiência Cardíaca , Células Clonais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/genética , Dioxigenases , Humanos , Mutação , Prognóstico , Proteínas Proto-Oncogênicas/genética
8.
Nat Biomed Eng ; 4(11): 1076-1089, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020600

RESUMO

Bone-marrow endothelial cells in the haematopoietic stem-cell niche form a network of blood vessels that regulates blood-cell traffic as well as the maintenance and function of haematopoietic stem and progenitor cells. Here, we report the design and in vivo performance of systemically injected lipid-polymer nanoparticles encapsulating small interfering RNA (siRNA), for the silencing of genes in bone-marrow endothelial cells. In mice, nanoparticles encapsulating siRNA sequences targeting the proteins stromal-derived factor 1 (Sdf1) or monocyte chemotactic protein 1 (Mcp1) enhanced (when silencing Sdf1) or inhibited (when silencing Mcp1) the release of stem and progenitor cells and of leukocytes from the bone marrow. In a mouse model of myocardial infarction, nanoparticle-mediated inhibition of cell release from the haematopoietic niche via Mcp1 silencing reduced leukocytes in the diseased heart, improved healing after infarction and attenuated heart failure. Nanoparticle-mediated RNA interference in the haematopoietic niche could be used to investigate haematopoietic processes for therapeutic applications in cancer, infection and cardiovascular disease.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Inativação Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Nicho de Células-Tronco/genética , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/prevenção & controle
9.
JAMA Cardiol ; 5(10): 1170-1175, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32639511

RESUMO

Importance: Cytokine release syndrome is a complication of coronavirus disease 2019. Clinically, advanced age and cardiovascular comorbidities are the most important risk factors. Objective: To determine whether clonal hematopoiesis of indeterminate potential (CHIP), an age-associated condition with excess cardiovascular risk defined as the presence of an expanded, mutated somatic blood cell clone in persons without other hematological abnormalities, may be associated with an inflammatory gene expression sensitizing monocytes to aggravated immune responses. Design, Setting, and Participants: This hypothesis-generating diagnostic study examined a cohort of patients with severe degenerative aortic valve stenosis or chronic postinfarction heart failure, as well as age-matched healthy control participants. Single-cell RNA sequencing and analyses of circulating peripheral monocytes was done between 2017 and 2019 to assess the transcriptome of circulating monocytes. Exposures: Severe degenerative aortic valve stenosis or chronic postinfarction heart failure. Main Outcomes and Measures: CHIP-driver sequence variations in monocytes with a proinflammatory signature of genes involved in cytokine release syndrome. Results: The study included 8 patients with severe degenerative aortic valve stenosis, 6 with chronic postinfarction heart failure, and 3 healthy control participants. Their mean age was 75.7 (range, 54-89) years, and 6 were women. Mean CHIP-driver gene variant allele frequency was 4.2% (range, 2.5%-6.9%) for DNMT3A and 14.3% (range, 2.6%-37.4%) for TET2. Participants with DNMT3A or TET2 CHIP-driver sequence variations displayed increased expression of interleukin 1ß (no CHIP-driver sequence variations, 1.6217 normalized Unique Molecular Identifiers [nUMI]; DNMT3A, 5.3956 nUMI; P < .001; TET2, 10.8216 nUMI; P < .001), the interleukin 6 receptor (no CHIP-driver sequence variations, 0.5386 nUMI; DNMT3A, 0.9162 nUMI; P < .001;TET2, 0.5738 nUMI; P < .001), as well as the NLRP3 inflammasome complex (no CHIP-driver sequence variations, 0.4797 nUMI; DNMT3A, 0.9961 nUMI; P < .001; TET2, 1.2189 nUMI; P < .001), plus upregulation of CD163 (no CHIP-driver sequence variations, 0.5239 nUMI; DNMT3A, 1.4722 nUMI; P < .001; TET2, 1.0684 nUMI; P < .001), a cellular receptor capable of mediating infection, macrophage activation syndrome, and other genes involved in cytokine response syndrome. Gene ontology term analyses of regulated genes revealed that the most significantly upregulated genes encode for leukocyte-activation and interleukin-signaling pathways in monocytes of individuals with DNMT3A (myeloid leukocyte activation: log[Q value], -50.1986; log P value, -54.5177; regulation of cytokine production: log[Q value], -21.0264; log P value, -24.1993; signaling by interleukins: log[Q value], -18.0710: log P value, -21.1597) or TET2 CHIP-driver sequence variations (immune response: log[Q value], -36.3673; log P value, -40.6864; regulation of cytokine production: log[Q value], -13.1733; log P value, -16.3463; signaling by interleukins: log[Q value], -12.6547: log P value, -15.7977). Conclusions and Relevance: Monocytes of individuals who carry CHIP-driver sequence variations and have cardiovascular disease appear to be primed for excessive inflammatory responses. Further studies are warranted to address potential adverse outcomes of coronavirus disease 2019 in patients with CHIP-driver sequence variations.


Assuntos
Estenose da Valva Aórtica/complicações , Hematopoiese Clonal/genética , Expressão Gênica , Insuficiência Cardíaca/complicações , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , COVID-19/complicações , Estudos de Casos e Controles , Síndrome da Liberação de Citocina/genética , Citocinas/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/genética , Dioxigenases , Feminino , Predisposição Genética para Doença , Variação Genética , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores de Superfície Celular/metabolismo , Receptores de Interleucina-6/metabolismo , Transcriptoma
10.
J Am Coll Cardiol ; 75(8): 901-915, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130926

RESUMO

BACKGROUND: Recurrent myocardial infarction (MI) is common in patients with coronary artery disease and is associated with high mortality. Long-term reprogramming of myeloid progenitors occurs in response to inflammatory stimuli and alters the organism's response to secondary inflammatory challenges. OBJECTIVES: This study examined the effect of recurrent MI on bone marrow response and cardiac inflammation. METHODS: The investigators developed a surgical mouse model in which 2 subsequent MIs affected different left ventricular regions in the same mouse. Recurrent MI was induced by ligating the left circumflex artery followed by the left anterior descending coronary artery branch. The study characterized the resulting ischemia by whole-heart fluorescent coronary angiography after optical organ clearing and by cardiac magnetic resonance imaging. RESULTS: A first MI-induced bone marrow "memory" via a circulating signal, reducing hematopoietic maintenance factor expression in bone marrow macrophages. This dampened the organism's reaction to subsequent events. Despite a similar extent of injury according to troponin levels, recurrent MI caused reduced emergency hematopoiesis and less leukocytosis than a first MI. Consequently, fewer leukocytes migrated to the ischemic myocardium. The hematopoietic response to lipopolysaccharide was also mitigated after a previous MI. The increase of white blood count in 28 patients was lower after recurrent MI compared with their first MI. CONCLUSIONS: The data suggested that hematopoietic and innate immune responses are shaped by a preceding MI.


Assuntos
Infarto Miocárdico de Parede Anterior/imunologia , Modelos Animais de Doenças , Hematopoese , Idoso , Idoso de 80 Anos ou mais , Animais , Infarto Miocárdico de Parede Anterior/sangue , Feminino , Humanos , Leucocitose , Macrófagos/fisiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Parabiose , Recidiva , Estudos Retrospectivos
11.
Nat Med ; 25(11): 1761-1771, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31700184

RESUMO

A sedentary lifestyle, chronic inflammation and leukocytosis increase atherosclerosis; however, it remains unclear whether regular physical activity influences leukocyte production. Here we show that voluntary running decreases hematopoietic activity in mice. Exercise protects mice and humans with atherosclerosis from chronic leukocytosis but does not compromise emergency hematopoiesis in mice. Mechanistically, exercise diminishes leptin production in adipose tissue, augmenting quiescence-promoting hematopoietic niche factors in leptin-receptor-positive stromal bone marrow cells. Induced deletion of the leptin receptor in Prrx1-creERT2; Leprfl/fl mice reveals that leptin's effect on bone marrow niche cells regulates hematopoietic stem and progenitor cell (HSPC) proliferation and leukocyte production, as well as cardiovascular inflammation and outcomes. Whereas running wheel withdrawal quickly reverses leptin levels, the impact of exercise on leukocyte production and on the HSPC epigenome and transcriptome persists for several weeks. Together, these data show that physical activity alters HSPCs via modulation of their niche, reducing hematopoietic output of inflammatory leukocytes.


Assuntos
Aterosclerose/terapia , Doenças Cardiovasculares/terapia , Células-Tronco Hematopoéticas/metabolismo , Inflamação/terapia , Condicionamento Físico Animal , Tecido Adiposo/metabolismo , Animais , Aterosclerose/prevenção & controle , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/prevenção & controle , Epigenoma/genética , Exercício Físico/fisiologia , Hematopoese/genética , Hematopoese/fisiologia , Proteínas de Homeodomínio/genética , Humanos , Inflamação/fisiopatologia , Leucócitos/metabolismo , Leucocitose/fisiopatologia , Leucocitose/terapia , Camundongos , Receptores para Leptina/genética , Comportamento Sedentário , Transcriptoma/genética
12.
Circ Res ; 124(9): 1372-1385, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30782088

RESUMO

RATIONALE: After a stroke, patients frequently experience altered systemic immunity resulting in peripheral immunosuppression and higher susceptibility to infections, which is at least partly attributed to lymphopenia. The mechanisms that profoundly change the systemic leukocyte repertoire after stroke are incompletely understood. Emerging evidence indicates that stroke alters hematopoietic output of the bone marrow. OBJECTIVE: To explore the mechanisms that lead to defects of B lymphopoiesis after ischemic stroke. METHODS AND RESULTS: We here report that ischemic stroke triggers brain-bone marrow communication via hormonal long-range signals that regulate hematopoietic B lineage decisions. Bone marrow fluorescence-activated cell sorter analyses and serial intravital microscopy indicate that transient middle cerebral artery occlusion in mice arrests B-cell development beginning at the pro-B-cell stage. This phenotype was not rescued in Myd88-/- and TLR4-/- mice with disrupted TLR (Toll-like receptor) signaling or after blockage of peripheral sympathetic nerves. Mechanistically, we identified stroke-induced glucocorticoid release as the main instigator of B lymphopoiesis defects. B-cell lineage-specific deletion of the GR (glucocorticoid receptor) in CD19-Cre loxP Nr3c1 mice attenuated lymphocytopenia after transient middle cerebral artery. In 20 patients with acute stroke, increased cortisol levels inversely correlated with blood lymphocyte numbers. CONCLUSIONS: Our data demonstrate that the hypothalamic-pituitary-adrenal axis mediates B lymphopoiesis defects after ischemic stroke.


Assuntos
Corticosteroides/sangue , Linfócitos B/metabolismo , Células da Medula Óssea/metabolismo , Linfopoese , Receptores de Glucocorticoides/sangue , Acidente Vascular Cerebral/sangue , Idoso , Animais , Linfócitos B/citologia , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Sistema Hipófise-Suprarrenal/fisiopatologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/fisiopatologia
13.
Circulation ; 139(10): 1320-1334, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30586743

RESUMO

BACKGROUND: The majority of the human genome comprises noncoding sequences, which are in part transcribed as long noncoding RNAs (lncRNAs). lncRNAs exhibit multiple functions, including the epigenetic control of gene expression. In this study, the effect of the lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) on atherosclerosis was examined. METHODS: The effect of MALAT1 on atherosclerosis was determined in apolipoprotein E-deficient (Apoe-/-) MALAT1-deficient (Malat1-/-) mice that were fed with a high-fat diet and by studying the regulation of MALAT1 in human plaques. RESULTS: Apoe-/- Malat1-/- mice that were fed a high-fat diet showed increased plaque size and infiltration of inflammatory CD45+ cells compared with Apoe-/- Malat1+/+ control mice. Bone marrow transplantation of Apoe-/- Malat1-/- bone marrow cells in Apoe-/- Malat1+/+ mice enhanced atherosclerotic lesion formation, which suggests that hematopoietic cells mediate the proatherosclerotic phenotype. Indeed, bone marrow cells isolated from Malat1-/- mice showed increased adhesion to endothelial cells and elevated levels of proinflammatory mediators. Moreover, myeloid cells of Malat1-/- mice displayed enhanced adhesion to atherosclerotic arteries in vivo. The anti-inflammatory effects of MALAT1 were attributed in part to reduction of the microRNA miR-503. MALAT1 expression was further significantly decreased in human plaques compared with normal arteries and was lower in symptomatic versus asymptomatic patients. Lower levels of MALAT1 in human plaques were associated with a worse prognosis. CONCLUSIONS: Reduced levels of MALAT1 augment atherosclerotic lesion formation in mice and are associated with human atherosclerotic disease. The proatherosclerotic effects observed in Malat1-/- mice were mainly caused by enhanced accumulation of hematopoietic cells.


Assuntos
Aorta/metabolismo , Aortite/metabolismo , Aterosclerose/metabolismo , Células da Medula Óssea/metabolismo , Hematopoese , Placa Aterosclerótica , RNA Longo não Codificante/metabolismo , Animais , Aorta/patologia , Aortite/genética , Aortite/patologia , Aterosclerose/genética , Aterosclerose/patologia , Células da Medula Óssea/patologia , Transplante de Medula Óssea , Estudos de Casos e Controles , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais
14.
Thromb Haemost ; 117(6): 1150-1163, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28447099

RESUMO

We have recently identified endothelial cell-secreted developmental endothelial locus-1 (Del-1) as an endogenous inhibitor of ß2-integrin-dependent leukocyte infiltration. Del-1 was previously also implicated in angiogenesis. Here, we addressed the role of endogenously produced Del-1 in ischaemia-related angiogenesis. Intriguingly, Del-1-deficient mice displayed increased neovascularisation in two independent ischaemic models (retinopathy of prematurity and hind-limb ischaemia), as compared to Del-1-proficient mice. On the contrary, angiogenic sprouting in vitro or ex vivo (aortic ring assay) and physiological developmental retina angiogenesis were not affected by Del-1 deficiency. Mechanistically, the enhanced ischaemic neovascularisation in Del-1-deficiency was linked to higher infiltration of the ischaemic tissue by CD45+ haematopoietic and immune cells. Moreover, Del-1-deficiency promoted ß2-integrin-dependent adhesion of haematopoietic cells to endothelial cells in vitro, and the homing of hematopoietic progenitor cells and of immune cell populations to ischaemic muscles in vivo. Consistently, the increased hind limb ischaemia-related angiogenesis in Del-1 deficiency was completely reversed in mice lacking both Del-1 and the ß2-integrin LFA-1. Additionally, enhanced retinopathy-associated neovascularisation in Del-1-deficient mice was reversed by LFA-1 blockade. Our data reveal a hitherto unrecognised function of endogenous Del-1 as a local inhibitor of ischaemia-induced angiogenesis by restraining LFA-1-dependent homing of pro-angiogenic haematopoietic cells to ischaemic tissues. Our findings are relevant for the optimisation of therapeutic approaches in the context of ischaemic diseases.


Assuntos
Proteínas de Transporte/metabolismo , Endotélio Vascular/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Inflamação/metabolismo , Isquemia/metabolismo , Leucócitos/fisiologia , Retinopatia da Prematuridade/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/genética , Adesão Celular , Moléculas de Adesão Celular , Movimento Celular , Modelos Animais de Doenças , Extremidades/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intercelular , Isquemia/imunologia , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/imunologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos , Camundongos Knockout , Neovascularização Fisiológica , RNA Interferente Pequeno/genética , Retinopatia da Prematuridade/imunologia
15.
EMBO Mol Med ; 8(1): 39-57, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26666269

RESUMO

Glioblastoma multiforme (GBM) is treated by surgical resection followed by radiochemotherapy. Bevacizumab is commonly deployed for anti-angiogenic therapy of recurrent GBM; however, innate immune cells have been identified as instigators of resistance to bevacizumab treatment. We identified angiopoietin-2 (Ang-2) as a potential target in both naive and bevacizumab-treated glioblastoma. Ang-2 expression was absent in normal human brain endothelium, while the highest Ang-2 levels were observed in bevacizumab-treated GBM. In a murine GBM model, VEGF blockade resulted in endothelial upregulation of Ang-2, whereas the combined inhibition of VEGF and Ang-2 leads to extended survival, decreased vascular permeability, depletion of tumor-associated macrophages, improved pericyte coverage, and increased numbers of intratumoral T lymphocytes. CD206(+) (M2-like) macrophages were identified as potential novel targets following anti-angiogenic therapy. Our findings imply a novel role for endothelial cells in therapy resistance and identify endothelial cell/myeloid cell crosstalk mediated by Ang-2 as a potential resistance mechanism. Therefore, combining VEGF blockade with inhibition of Ang-2 may potentially overcome resistance to bevacizumab therapy.


Assuntos
Angiopoietina-2/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Angiopoietina-2/antagonistas & inibidores , Angiopoietina-2/sangue , Animais , Bevacizumab/uso terapêutico , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Humanos , Lectinas Tipo C/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gradação de Tumores , Receptores de Superfície Celular/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA