Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biomedicines ; 10(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36552048

RESUMO

Protein convertases (PCs) play a significant role in post-translational procedures by transforming inactive precursor proteins into their active forms. The role of PCs is crucial for cellular homeostasis because they are involved in cell signaling. They have also been described in many diseases such as Alzheimer's and cancer. Cancer cells are secretory cells that send signals to the tumor microenvironment (TME), remodeling the surrounding space for their own benefits. One of the most important components of the TME is the immune system of the tumor. In this review, we describe recent discoveries that link PCs to the immune escape of tumors. Among PCs, many findings have determined the role of Furin (PC3) as a paramount enzyme causing the TME to induce tumor immune evasion. The overexpression of various cytokines and proteins, for instance, IL10 and TGF-B, moves the TME towards the presence of Tregs and, consequently, immune tolerance. Furthermore, Furin is implicated in the regulation of macrophage activity that contributes to the increased impairment of DCs (dendritic cells) and T effector cells. Moreover, Furin interferes in the MHC Class_1 proteolytic cleavage in the trans-Golgi network. In tumors, the T cytotoxic lymphocytes (CTLs) response is impeded by the PD1 receptor (PD1-R) located on CTLs and its ligand, PDL1, located on cancer cells. The inhibition of Furin is a subtle means of enhancing the antitumor response by repressing PD-1 expression in tumors or macrophage cells. The impacts of other PCs in tumor immune escape have not yet been clarified to the extent that Furin has. Accordingly, the influence of other types of PCs in tumor immune escape is a promising topic for further consideration.

2.
Int J Mol Sci ; 22(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062897

RESUMO

Cancer is a phenomenon broadly related to ageing in various ways such as cell cycle deregulation, metabolic defects or telomerases dysfunction as principal processes. Although the tumor cell is the main actor in cancer progression, it is not the only element of the disease. Cells and the matrix surrounding the tumor, called the tumor microenvironment (TME), play key roles in cancer progression. Phenotypic changes of the TME are indispensable for disease progression and a few of these transformations are produced by epigenetic changes including miRNA dysregulation. In this study, we found that a specific group of miRNAs in the liver TME produced by colon cancer called geromiRs, which are miRNAs related to the ageing process, are significantly downregulated. The three principal cell types involved in the liver TME, namely, liver sinusoidal endothelial cells, hepatic stellate (Ito) cells and Kupffer cells, were isolated from a murine hepatic metastasis model, and the miRNA and gene expression profiles were studied. From the 115 geromiRs and their associated hallmarks of aging, which we compiled from the literature, 75 were represented in the used microarrays, 26 out of them were downregulated in the TME cells during colon cancer colonization of the liver, and none of them were upregulated. The histone modification hallmark of the downregulated geromiRs is significantly enriched with the geromiRs miR-15a, miR-16, miR-26a, miR-29a, miR-29b and miR-29c. We built a network of all of the geromiRs downregulated in the TME cells and their gene targets from the MirTarBase database, and we analyzed the expression of these geromiR gene targets in the TME. We found that Cercam and Spsb4, identified as prognostic markers in a few cancer types, are associated with downregulated geromiRs and are upregulated in the TME cells.


Assuntos
Neoplasias do Colo/genética , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , MicroRNAs/genética , Animais , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/genética , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Fígado/patologia , Camundongos , MicroRNAs/classificação
3.
Semin Cancer Biol ; 71: 122-133, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32805395

RESUMO

Cancer is first a localized tissue disorder, whose soluble and exosomal molecules and invasive cells induce a host response providing the stromal components of the primary tumor microenvironment (TME). Once the TME is developed, cancer-derived molecules and cells can more efficiently spread out and a whole-body response takes place, whose pathophysiological changes may result in a paraneoplastic syndrome. Remote organ-specific prometastatic reactions may also occur at this time, facilitating metastatic activities of circulating tumor cells (CTCs) through premetastatic niche development at targeted organs. However, additional signaling factors from the inter-organ communication network involved in the pathophysiology and comorbidities of cancer patients may also regulate prometastatic reaction-stimulating effects of cancer and non-cancer tissue factors. This article provides a conceptual overview of our ongoing clinical research on the liver prometastatic reaction (LPR) of patients with colorectal cancer (CRC), their portal vein- and hepatic artery-driven LPR-Stimulating Factors (LPR-SF), and their resulting LPR-derived Metastasis-Stimulating Factors (LPR-MSF) acting on liver-invading CRC cells. In addition, we also provide new insights on the molecular subtyping of LPR-responsive cancer phenotypes in patients with CRC and melanoma; and on how to investigate and interpret the prometastatic infrastructure in the real pathophysiological context of patients with cancer undergoing surgical procedures and receiving pharmacological treatments with multiple side effects, including those affecting the LPR, its stimulating factors and responsive cancer phenotypes.


Assuntos
Neoplasias Hepáticas/secundário , Recidiva Local de Neoplasia/patologia , Células Neoplásicas Circulantes/patologia , Fenótipo , Microambiente Tumoral , Animais , Humanos
4.
Biochim Biophys Acta Mol Cell Res ; 1868(3): 118912, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33249002

RESUMO

Despite continuous exertion made, colon cancer still represents a major health problem and its incidence continues being high worldwide. There is growing evidence in support of the cancer stem cells (CSCs) being central in the initiation of this cancer, and CSCs have been the focus of various studies for the identification of new ways of treatment. Lately, the proprotein convertases (PCs) were reported to regulate the maturation and expression of various molecules involved in the malignant phenotype of colon cancer cells, however, the identity of the molecules regulated by these serine proteases in CSCs is unknown. In this study, we used the general PCs inhibitor, the Decanoyl-RVKR-chloromethylketone (Decanoyl-RVKR-CMK) that inhibits all the PCs found in the secretory pathway, and analyzed its effect on CSCs using RNA-seq analysis. Remarkably, from the only 9 up-regulated genes in the human SW620-derived sphere-forming cells, we identified 7 of the 11 human metallothioneins, all of them localized on chromosome 16, and zinc related proteins as downstream effectors of the PCs. The importance of these molecules in the regulation of cell proliferation, differentiation and chemoresistance, and their reported potential tumor suppressor role and loss in colon cancer patients associated with worse prognosis, suggests that targeting PCs in the control of the malignant phenotype of CSCs is a new potential therapeutic strategy in colon cancer.


Assuntos
Clorometilcetonas de Aminoácidos/farmacologia , Neoplasias do Colo/enzimologia , Perfilação da Expressão Gênica/métodos , Metalotioneína/genética , Células-Tronco Neoplásicas/enzimologia , Regulação para Cima , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Neoplásicas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Pró-Proteína Convertases/antagonistas & inibidores , Análise de Sequência de RNA , Sequenciamento do Exoma
5.
Anat Sci Int ; 96(2): 221-230, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33030698

RESUMO

Many studies have been conducted to determine the composition of the glycoconjugates of the mucus-secreting cells of the fundic glands of the stomach. However, the chief cells of these glands have been largely ignored because they secrete mainly zymogens with a lower glycosylation. The aim of this work was to analyze the glycoconjugates of the gastric chief cells by a battery of 17 different lectins, recognizing Fucose, N-acetylgalactosamine, Galactose, N-acetylneuraminic acid, N-acetylglucosamine and Mannose containing oligosaccharides. Histochemical techniques were performed with several lectins and also combined with two pre-treatments; ß-elimination, which removes O-linked oligosaccharides, and incubation with Peptide-N-Gycosidase F, which removes N-linked oligosaccharides. In addition, acid hydrolysis was performed before WGA histochemistry, and incubation with glucose oxidase before Con A labeling. Many lectins did not stain the chief cells. In addition, the presence of O-glycans in the apical cell membrane was demonstrated with the lectins AAL, HPA, MPA/MPL, PNA, RCA-I, and WGA. Some of these O-glycans were resistant to short-term ß-elimination pre-treatments. Mannose-binding lectins stained the basal cytoplasm of the chief cells. The level of glycosylation of the chief cells was lower than that of the mucous cells. The presence of O-glycans in the apical cell membrane is consistent with the presence of mucins such as MUC1 in the apical membrane of chief cells. Moreover, Mannose-binding lectins revealed N-glycosylation in the basal cytoplasm. The knowledge of gastric chief cell glycoconjugates is relevant because of their potential involvement not only in in physiological but also in pathological processes, such as cancer.


Assuntos
Membrana Celular/metabolismo , Celulas Principais Gástricas/metabolismo , Fundo Gástrico/metabolismo , Mucosa Gástrica/metabolismo , Glicoconjugados/metabolismo , Animais , Lectinas/metabolismo , Ratos
6.
J Invest Dermatol ; 134(2): 470-480, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23938462

RESUMO

Very late antigen-4 (VLA-4) is frequently overexpressed on melanoma cells contributing to inflammation-dependent metastasis. Melanoma cell adhesion to endothelium via VLA-4-vascular cell adhesion molecule-1 (VCAM-1) interaction was used to study VLA-4 activation during melanoma cell response to inflammation. Cooperation among major inflammatory mediators was analyzed in melanoma cells exposed to single inflammatory factors in the presence of inhibitors for other assayed mediators. A stepwise cascade of hierarchized molecules heterogeneously made and used during melanoma response to IL-18, induced hydrogen peroxide (H2O2), in turn activating VLA-4 and melanoma cell adhesion to endothelium. The cascade involved prostaglandin E2 (PGE2) production from melanoma induced by IL-18-dependent tumor necrosis factor-α (TNFα); next, PGE2-induced IL-1ß via vascular endothelial growth factor (VEGF) secretion, which in turn induced VLA-4 activation via cyclooxygenase 2-dependent H2O2. This sequence operated in IL-18R/VLA-4/VEGF-expressing murine (B16) and human (A375 and 883) melanomas, but not in those without this phenotype. Separation of active VLA-4-expressing B16 melanoma cells through immobilized VCAM-1 verified their higher IL-18R/TNFR1/VEGFR2 expression and metastatic growth than inactive VLA-4-expressing cells. However, cooperation among melanoma cell sub-populations with heterogeneous cytokine receptor levels may occur through VLA-4-stimulating factors, leading to intratumoral amplification of metastatic potential. Therefore, expression of the VLA-4-stimulating factor sequence may help to predict melanoma prometastatic risk, and offers therapeutic targets for metastatic melanoma deactivation through VLA-4 activation blockade.


Assuntos
Integrina alfa4beta1/imunologia , Interleucina-18/imunologia , Melanoma , Neoplasias Cutâneas , Animais , Adesão Celular/imunologia , Linhagem Celular Tumoral , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Integrina alfa4beta1/metabolismo , Interleucina-18/metabolismo , Fígado/citologia , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/secundário , Masculino , Melanoma/epidemiologia , Melanoma/imunologia , Melanoma/secundário , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Cultura Primária de Células , Receptores de Interleucina-18/genética , Receptores de Interleucina-18/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Fatores de Risco , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologia
7.
Am J Pathol ; 183(1): 69-82, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23707237

RESUMO

IL-18 is an immune-stimulating cytokine that promotes experimental melanoma metastasis via vascular endothelial growth factor (VEGF)-induced very late antigen (VLA)-4. We studied genes associated with the ability of melanoma cells to allow metastasis under IL-18 effects, and we verified their expression in metastatic lesions from patients with melanoma. Human melanoma cell lines with and without the IL-18 receptor (IL-18R)/VEGF/VLA-4-expressing phenotype were identified, and their metastatic potential was studied in nude mice. RNA from untreated and IL-18-treated melanoma phenotypes was hybridized to a cDNA microarray, and their signature genes were studied. RNA from primary and metastatic lesions from patients with melanoma was hybridized to a cDNA microarray to identify lesions with the transcript patterns of melanoma cells with and without the IL-18R/VEGF/VLA-4 phenotype. IL-18R/VEGF/VLA-4-expressing A375 and 1182 melanoma cells produced a higher metastasis number than 526 and 624.28 melanoma cells, not using this prometastatic pathway. Melanoma cells with and without the IL-18R/VEGF/VLA-4 phenotype had distinct transcript patterns. However, the type I transcriptional cluster, including cutaneous and lymph node metastases, but not the type II cluster, not including cutaneous metastases, had signature genes from IL-18-treated melanoma cells with, but not without, the IL-18R/VEGF/VLA-4 phenotype. Metastatic melanoma lesions with and without IL-18-dependent genes were identified, suggesting that melanoma metastasis developed via inflammation-dependent and inflammation-independent mechanisms. Signature genes from melanomas with and without the IL-18R/VEGF/VLA-4 phenotype may serve as diagnostic biomarkers of melanoma predisposition to prometastatic effects of IL-18.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Interleucina-18/metabolismo , Melanoma/genética , Melanoma/secundário , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Análise por Conglomerados , DNA Complementar , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Integrina alfa4beta1/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Metástase Linfática , Masculino , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/secundário , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Gut ; 61(10): 1465-72, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22071959

RESUMO

BACKGROUND: The transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts is a major mechanism for stroma development in hepatic metastasis, but their regulatory pathways remain unclear. Transdifferentiated HSCs from fibrotic liver express high levels of the fibrillar collagen receptor discoidin domain receptor 2 (DDR2), but it is unclear if DDR2 plays a direct profibrogenic role in the tumour microenvironment. AIM: To assess the impact of DDR2 on the prometastatic role of HSC-derived myofibroblasts. METHODS: Hepatic metastases were induced in DDR2(-/-) and DDR2(+/+) mice by intrasplenic injection of MCA38 colon carcinoma cells, and their growth and features were characterised. Stromagenic, angiogenic and cancer cell proliferation responses were quantified in metastases by immunohistochemistry. The adhesion-, migration- and proliferation-stimulating activities of supernatants from primary cultured DDR2(-/-) and DDR2(+/+) HSCs, incubated in MCA38 cell-conditioned medium, were evaluated in primary cultured liver sinusoidal endothelium cells (LSECs) and MCA38 cells. Gene expression signatures from freshly isolated DDR2(-/-) and DDR2(+/+) HSCs were compared and DDR2-regulated genes were studied by RT-PCR under basal conditions and after stimulation with MCA38 tumour-conditioned media. RESULTS: Metastases were increased three fold in DDR2(-/-) livers, and contained a higher density of α-smooth muscle actin-expressing myofibroblasts, CD31-expressing microvessels and Ki67-expressing MCA38 cells than metastases in DDR2(+/+) livers. Media conditioned by MCA38-activated DDR2(-/-) HSCs significantly increased adhesion, migration and proliferation of LSECs and MCA38 cells, compared with DDR2(+/+) HSCs. DDR2 deficiency in HSCs led to decreased gene expression of interferon γ-inducing factor interleukin (IL)-18 and insulin-like growth factor-I; and increased gene expression of prometastatic factors IL-10, transforming growth factor (TGF)ß and vascular endothelial growth factor (VEGF), bone morphogenetic protein-7 and syndecan-1. MC38 tumour-conditioned media further exacerbated expression changes in DDR2-dependent IL-10, TGFß and VEGF genes. CONCLUSION: DDR2 deficiency fosters the myofibroblast transdifferentiation of tumour-activated HSCs, generating a prometastatic microenvironment in the liver via HSC-derived factors. These findings underscore the role of stromal cells in conditioning the hepatic microenvironment for metastases through altered receptor-stroma interactions.


Assuntos
Biomarcadores Tumorais/deficiência , Neoplasias do Colo/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Receptores Proteína Tirosina Quinases/deficiência , Receptores Mitogênicos/deficiência , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Receptores com Domínio Discoidina , Células Estreladas do Fígado/patologia , Neoplasias Hepáticas Experimentais/secundário , Masculino , Camundongos , Camundongos Knockout , Miofibroblastos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Am J Pathol ; 179(6): 2894-904, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22019896

RESUMO

Hepatic stellate cells (HSCs) interact with fibrillar collagen through the discoidin domain receptor 2 (DDR2) in acute hepatic injury, generating increased fibrosis. However, the contribution of DDR2 signaling to chronic liver fibrosis in vivo is unclear, despite its relevance to chronic human liver disease. We administered carbon tetrachloride (CCl(4)) to DDR2(+/+) and DDR2(-/-) mice twice weekly, and liver tissues and isolated HSCs were analyzed. In contrast to changes seen in acute injury, after chronic CCl(4) administration, DDR2(-/-) livers had increased collagen deposition, gelatinolytic activity, and HSC density. Increased basal gene expression of osteopontin, transforming growth factor-ß1, monocyte chemoattractant protein-1, and IL-10 and reduced basal gene expression of matrix metalloproteinase-2, matrix metalloproteinase-13, and collagen type I in quiescent DDR2(-/-) HSCs were amplified further after chronic CCl(4). In concordance, DDR2(-/-) HSCs isolated from chronically injured livers had enhanced in vitro migration and proliferation, but less extracellular matrix degradative activity. Macrophages from chronic CCl(4)-treated DDR2(-/-) livers showed stronger chemoattractive activity toward DDR2(-/-) HSCs than DDR2(+/+) macrophages, increased extracellular matrix degradation, and higher cytokine mRNA expression. In conclusion, loss of DDR2 promotes chronic liver fibrosis after CCl(4) injury. The fibrogenic sinusoidal milieu generated in chronic DDR2(-/-) livers recruits more HSCs to injured regions, which enhances fibrosis. Together, these findings suggest that DDR2 normally orchestrates gene programs and paracrine interactions between HSCs and macrophages that together attenuate chronic hepatic fibrosis.


Assuntos
Comunicação Celular/fisiologia , Células Estreladas do Fígado/fisiologia , Cirrose Hepática/patologia , Macrófagos/fisiologia , Receptores Proteína Tirosina Quinases/deficiência , Receptores Mitogênicos/deficiência , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Tetracloreto de Carbono/toxicidade , Movimento Celular/fisiologia , Proliferação de Células , Células Cultivadas , Colágeno Tipo I/metabolismo , Colagenases/metabolismo , Receptores com Domínio Discoidina , Gelatinases/metabolismo , Cirrose Hepática/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Receptores Proteína Tirosina Quinases/fisiologia , Receptores Mitogênicos/fisiologia , Transdução de Sinais/fisiologia
10.
J Transl Med ; 9: 142, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21867538

RESUMO

BACKGROUND: Human melanoma frequently colonizes bone marrow (BM) since its earliest stage of systemic dissemination, prior to clinical metastasis occurrence. However, how melanoma cell adhesion and proliferation mechanisms are regulated within bone marrow stromal cell (BMSC) microenvironment remain unclear. Consistent with the prometastatic role of inflammatory and angiogenic factors, several studies have reported elevated levels of cyclooxygenase-2 (COX-2) in melanoma although its pathogenic role in bone marrow melanoma metastasis is unknown. METHODS: Herein we analyzed the effect of cyclooxygenase-2 (COX-2) inhibitor celecoxib in a model of generalized BM dissemination of left cardiac ventricle-injected B16 melanoma (B16M) cells into healthy and bacterial endotoxin lipopolysaccharide (LPS)-pretreated mice to induce inflammation. In addition, B16M and human A375 melanoma (A375M) cells were exposed to conditioned media from basal and LPS-treated primary cultured murine and human BMSCs, and the contribution of COX-2 to the adhesion and proliferation of melanoma cells was also studied. RESULTS: Mice given one single intravenous injection of LPS 6 hour prior to cancer cells significantly increased B16M metastasis in BM compared to untreated mice; however, administration of oral celecoxib reduced BM metastasis incidence and volume in healthy mice, and almost completely abrogated LPS-dependent melanoma metastases. In vitro, untreated and LPS-treated murine and human BMSC-conditioned medium (CM) increased VCAM-1-dependent BMSC adherence and proliferation of B16M and A375M cells, respectively, as compared to basal medium-treated melanoma cells. Addition of celecoxib to both B16M and A375M cells abolished adhesion and proliferation increments induced by BMSC-CM. TNFα and VEGF secretion increased in the supernatant of LPS-treated BMSCs; however, anti-VEGF neutralizing antibodies added to B16M and A375M cells prior to LPS-treated BMSC-CM resulted in a complete abrogation of both adhesion- and proliferation-stimulating effect of BMSC on melanoma cells. Conversely, recombinant VEGF increased adherence to BMSC and proliferation of both B16M and A375M cells, compared to basal medium-treated cells, while addition of celecoxib neutralized VEGF effects on melanoma. Recombinant TNFα induced B16M production of VEGF via COX-2-dependent mechanism. Moreover, exogenous PGE2 also increased B16M cell adhesion to immobilized recombinant VCAM-1. CONCLUSIONS: We demonstrate the contribution of VEGF-induced tumor COX-2 to the regulation of adhesion- and proliferation-stimulating effects of TNFα, from endotoxin-activated bone marrow stromal cells, on VLA-4-expressing melanoma cells. These data suggest COX-2 neutralization as a potential anti-metastatic therapy in melanoma patients at high risk of systemic and bone dissemination due to intercurrent infectious and inflammatory diseases.


Assuntos
Medula Óssea/patologia , Microambiente Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Melanoma/enzimologia , Melanoma/patologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Western Blotting , Medula Óssea/efeitos dos fármacos , Neoplasias da Medula Óssea/patologia , Neoplasias da Medula Óssea/secundário , Celecoxib , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Melanoma Experimental/enzimologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Molécula 1 de Adesão de Célula Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA