Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Small Struct ; 4(9)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38073766

RESUMO

Understanding the effects of inflammation and cirrhosis on the regulation of drug metabolism during the progression of hepatocellular carcinoma (HCC) is critical for developing patient-specific treatment strategies. In this work, we created novel three-dimensional vascularized HCC-on-a-chips (HCCoC), composed of HCC, endothelial, stellate, and Kupffer cells tuned to mimic normal or cirrhotic liver stiffness. HCC inflammation was controlled by tuning Kupffer macrophage numbers, and the impact of cytochrome P450-3A4 (CYP3A4) was investigated by culturing HepG2 HCC cells transfected with CYP3A4 to upregulate expression from baseline. This model allowed for the simulation of chemotherapeutic delivery methods such as intravenous injection and transcatheter arterial chemoembolization (TACE). We showed that upregulation of metabolic activity, incorporation of cirrhosis and inflammation, increase vascular permeability due to upregulated inflammatory cytokines leading to significant variability in chemotherapeutic treatment efficacy. Specifically, we show that further modulation of CYP3A4 activity of HCC cells by TACE delivery of doxorubicin provides an additional improvement to treatment response and reduces chemotherapy-associated endothelial porosity increase. The HCCoCs were shown to have utility in uncovering the impact of the tumor microenvironment (TME) during cancer progression on vascular properties, tumor response to therapeutics, and drug delivery strategies.

2.
Med Phys ; 50(12): 7879-7890, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37409792

RESUMO

BACKGROUND: Thermochemical ablation (TCA) is a minimally invasive therapy under development for hepatocellular carcinoma. TCA simultaneously delivers an acid (acetic acid, AcOH) and base (sodium hydroxide, NaOH) directly into the tumor, where the acid/base chemical reaction produces an exotherm that induces local ablation. However, AcOH and NaOH are not radiopaque, making monitoring TCA delivery difficult. PURPOSE: We address the issue of image guidance for TCA by utilizing cesium hydroxide (CsOH) as a novel theranostic component of TCA that is detectable and quantifiable with dual-energy CT (DECT). MATERIALS AND METHODS: To quantify the minimum concentration of CsOH that can be positively identified by DECT, the limit of detection (LOD) was established in an elliptical phantom (Multi-Energy CT Quality Assurance Phantom, Kyoto Kagaku, Kyoto, Japan) with two DECT technologies: a dual-source system (SOMATOM Force, Siemens Healthineers, Forchheim, Germany) and a split-filter, single-source system (SOMATOM Edge, Siemens Healthineers). The dual-energy ratio (DER) and LOD of CsOH were determined for each system. Cesium concentration quantification accuracy was evaluated in a gelatin phantom before quantitative mapping was performed in ex vivo models. RESULTS: On the dual-source system, the DER and LOD were 2.94 and 1.36-mM CsOH, respectively. For the split-filter system, the DER and LOD were 1.41- and 6.11-mM CsOH, respectively. The signal on cesium maps in phantoms tracked linearly with concentration (R2  = 0.99) on both systems with an RMSE of 2.56 and 6.72 on the dual-source and split-filter system, respectively. In ex vivo models, CsOH was detected following delivery of TCA at all concentrations. CONCLUSIONS: DECT can be used to detect and quantify the concentration of cesium in phantom and ex vivo tissue models. When incorporated in TCA, CsOH performs as a theranostic agent for quantitative DECT image-guidance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Meios de Contraste , Hidróxido de Sódio , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas
3.
J Vasc Interv Radiol ; 34(5): 782-789, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36539151

RESUMO

PURPOSE: To evaluate the feasibility of using dual-energy computed tomography (CT) and theranostic cesium hydroxide (CsOH) for image guidance of thermochemical ablation (TCA) in a rabbit VX2 tumor model. MATERIALS AND METHODS: In vivo experiments were performed on New Zealand white rabbits, where VX2 tumor fragments (0.3 mL) were inoculated into the right and left flanks (n = 16 rabbits, 32 tumors). Catheters were placed in the approximate center of 1- to 2-cm diameter tumors under ultrasound guidance. TCA was delivered in 1 of 3 treatment groups: untreated control, 5-M TCA, or 10-M TCA. The TCA base reagent was doped with 250-mM CsOH. Dual-energy CT was performed before and after TCA. Cesium (CS)-specific images were postprocessed on the basis of previous phantom calibrations to determine Cs concentration. Line profiles were drawn through the ablation center. Twenty-four hours after TCA, subjects were euthanized, and the resulting damage was evaluated with histopathology. RESULTS: Cs was detected in 100% of treated tumors (n = 21). Line profiles indicated highest concentrations at the injection site and decreased concentrations at the tumor margins, with no Cs detected beyond the ablation zone. The maximum detected Cs concentration ranged from 14.39 to 137.33 mM. A dose-dependent trend in tissue necrosis was demonstrated between the 10-M TCA and 5-M TCA treatment groups (P = .0005) and untreated controls (P = .0089). CONCLUSIONS: Dual-energy CT provided image guidance for delivery, localization, and quantification of TCA in the rabbit VX2 model.


Assuntos
Neoplasias Hepáticas Experimentais , Tomografia Computadorizada por Raios X , Coelhos , Animais , Tomografia Computadorizada por Raios X/métodos , Neoplasias Hepáticas Experimentais/cirurgia , Césio
4.
Front Oncol ; 11: 662135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262860

RESUMO

Variations in tumor biology from patient to patient combined with the low overall survival rate of hepatocellular carcinoma (HCC) present significant clinical challenges. During the progression of chronic liver diseases from inflammation to the development of HCC, microenvironmental properties, including tissue stiffness and oxygen concentration, change over time. This can potentially impact drug metabolism and subsequent therapy response to commonly utilized therapeutics, such as doxorubicin, multi-kinase inhibitors (e.g., sorafenib), and other drugs, including immunotherapies. In this study, we utilized four common HCC cell lines embedded in 3D collagen type-I gels of varying stiffnesses to mimic normal and cirrhotic livers with environmental oxygen regulation to quantify the impact of these microenvironmental factors on HCC chemoresistance. In general, we found that HCC cells with higher baseline levels of cytochrome p450-3A4 (CYP3A4) enzyme expression, HepG2 and C3Asub28, exhibited a cirrhosis-dependent increase in doxorubicin chemoresistance. Under the same conditions, HCC cell lines with lower CYP3A4 expression, HuH-7 and Hep3B2, showed a decrease in doxorubicin chemoresistance in response to an increase in microenvironmental stiffness. This differential therapeutic response was correlated with the regulation of CYP3A4 expression levels under the influence of stiffness and oxygen variation. In all tested HCC cell lines, the addition of sorafenib lowered the required doxorubicin dose to induce significant levels of cell death, demonstrating its potential to help reduce systemic doxorubicin toxicity when used in combination. These results suggest that patient-specific tumor microenvironmental factors, including tissue stiffness, hypoxia, and CYP3A4 activity levels, may need to be considered for more effective use of chemotherapeutics in HCC patients.

5.
Cancers (Basel) ; 13(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063752

RESUMO

Thermal ablation is a cornerstone in the management of cancer patients. Typically, ablation procedures are performed for patients with a solitary or oligometastatic disease with the intention of eradicating all sites of the disease. Ablation has traditionally played a less prominent role for patients with a widely metastatic disease. For such patients, attempting to treat numerous sites of disease compounds potential risks without a clear clinical benefit and, as such, a compelling justification for performing an intervention that is unlikely to alter a patient's clinical trajectory is uncommon. However, the discovery of immune checkpoints and the development of immune checkpoint inhibitors have brought a new perspective to the relevance of local cancer therapies such as ablation for patients with a metastatic disease. It is becoming increasingly apparent that local cancer therapies can have systemic immune effects. Thus, in the new perspective of cancer care centered upon immunologic principles, there is a strong interest in exploring the utility of ablation for patients with a metastatic disease for its immunologic implications. In this review, we summarize the unmet clinical need for adjuvant interventions such as ablation to broaden the impact of systemic immunotherapies. We additionally highlight the extant preclinical and clinical data for the immunogenicity of common thermal ablation modalities.

6.
Int J Hyperthermia ; 37(1): 711-741, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32579419

RESUMO

The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.


Assuntos
Hipertermia Induzida , Neoplasias , Calefação , Temperatura Alta , Humanos , Neoplasias/terapia , Tecnologia
7.
Med Phys ; 47(8): 3752-3771, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32453879

RESUMO

Computed tomography (CT) technology has rapidly evolved since its introduction in the 1970s. It is a highly important diagnostic tool for clinicians as demonstrated by the significant increase in utilization over several decades. However, much of the effort to develop and advance CT applications has been focused on improving visual sensitivity and reducing radiation dose. In comparison to these areas, improvements in quantitative CT have lagged behind. While this could be a consequence of the technological limitations of conventional CT, advanced dual-energy CT (DECT) and photon-counting detector CT (PCD-CT) offer new opportunities for quantitation. Routine use of DECT is becoming more widely available and PCD-CT is rapidly developing. This review covers efforts to address an unmet need for improved quantitative imaging to better characterize disease, identify biomarkers, and evaluate therapeutic response, with an emphasis on multi-energy CT applications. The review will primarily discuss applications that have utilized quantitative metrics using both conventional and DECT, such as bone mineral density measurement, evaluation of renal lesions, and diagnosis of fatty liver disease. Other topics that will be discussed include efforts to improve quantitative CT volumetry and radiomics. Finally, we will address the use of quantitative CT to enhance image-guided techniques for surgery, radiotherapy and interventions and provide unique opportunities for development of new contrast agents.


Assuntos
Fótons , Tomografia Computadorizada por Raios X , Tomografia
8.
Micromachines (Basel) ; 11(5)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397454

RESUMO

In chronic liver diseases and hepatocellular carcinoma, the cells and extracellular matrix of the liver undergo significant alteration in response to chronic injury. Recent literature has highlighted the critical, but less studied, role of the liver vasculature in the progression of chronic liver diseases. Recent advancements in liver-on-a-chip systems has allowed in depth investigation of the role that the hepatic vasculature plays both in response to, and progression of, chronic liver disease. In this review, we first introduce the structure, gradients, mechanical properties, and cellular composition of the liver and describe how these factors influence the vasculature. We summarize state-of-the-art vascularized liver-on-a-chip platforms for investigating biological models of chronic liver disease and their influence on the liver sinusoidal endothelial cells of the hepatic vasculature. We conclude with a discussion of how future developments in the field may affect the study of chronic liver diseases, and drug development and testing.

9.
J Mass Spectrom ; 55(4): e4477, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31804009

RESUMO

Hepatocellular carcinoma is a growing worldwide problem with a high mortality rate. This malignancy does not respond well to chemotherapy, and most patients present late in their disease at which time surgery is no longer an option. Over the past three decades, minimally invasive methods have evolved to treat unresectable disease and prolong survival. Intra-arterial embolization techniques are used for large or multiple tumors but have distressingly high levels of local recurrence and can be costly to implement. A new method called thermoembolization was recently reported, which destroys target tissue by combining reactive exothermic chemistry with an extreme local change in pH and ischemia. Described herein are experiments performed using this technique in vivo in a swine model. A microcatheter was advanced under fluoroscopic guidance into a branch of the hepatic artery to deliver a targeted dose of dichloroacetyl chloride dissolved in ethiodized oil into the liver. The following day, the animals were imaged by computed tomography and euthanized. Assessing the reaction product distribution and establishing a correlation with the effects are important for understanding the effects. This presented a significant challenge, however, as the reagent used does not contain a chromophore and is not otherwise readily detectable. Mass spectrometry imaging was employed to determine spatial distribution in treated samples. Additional insights on the biology were obtained by correlating the results with histology, immunohistochemistry, and immunofluorescence. The results are encouraging and may lead to a therapy with less local recurrence and improved overall survival for patients with this disease.


Assuntos
Acetatos/farmacologia , Embolização Terapêutica/métodos , Fígado/diagnóstico por imagem , Espectrometria de Massas em Tandem/métodos , Acetatos/administração & dosagem , Animais , Meios de Contraste/farmacocinética , Embolização Terapêutica/instrumentação , Artéria Hepática , Concentração de Íons de Hidrogênio , Fígado/irrigação sanguínea , Fígado/efeitos dos fármacos , Fígado/patologia , Necrose , Suínos , Dispositivos de Acesso Vascular
10.
Pharmaceutics ; 12(12)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419304

RESUMO

Primary liver cancer, or hepatocellular carcinoma (HCC), is a major worldwide cause of death from carcinoma. Most patients are not candidates for surgery and medical therapies, including new immunotherapies, have not shown major improvements since the modest benefit seen with the introduction of sorafenib over a decade ago. Locoregional therapies for intermediate stage disease are not curative but provide some benefit. However, upon close scrutiny, there is still residual disease in most cases. We review the current status for treatment of intermediate stage disease, summarize the literature on correlative histopathology, and discuss emerging methods at micro-, nano-, and pico-scales to improve therapy. These include transarterial hyperthermia methods and thermoembolization, along with microfluidics model systems and new applications of mass spectrometry imaging for label-free analysis of pharmacokinetics and pharmacodynamics.

11.
Cancers (Basel) ; 13(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396289

RESUMO

Radiofrequency ablation (RFA) and microwave ablation (MWA) are the most widely studied and applied ablation techniques for treating primary and secondary liver tumors. These techniques are considered curative for small hepatic tumors, with post-ablation outcomes most commonly assessed by an imaging follow up. However, there is increasing evidence of a discrepancy between radiological and pathological findings when ablated lesions are evaluated following liver resection or liver transplantation. A comprehensive review of the available literature reporting the complete pathological response (cPR) following RFA and MWA was performed to estimate the success rate and identify the factors associated with treatment failure. Following RFA, cPR is reported in 26-96% of tumors compared to 57-95% with MWA. Larger tumor size and vessels larger than 3 mm adjacent to the treated tumor are the most important factors identified by previous studies associated with viable residual tumors after RFA. Correlating post-ablation radiological studies with pathological findings shows that computed tomography (CT) and magnetic resonance imaging (MRI) have low sensitivity but high specificity for detecting residual viable or recurrent hepatocellular carcinoma (HCC) tumors. There are promising recent reports combining multiprobe ablation techniques with three-dimensional treatment planning software and stereotactic-aiming instrumentation to achieve more than 90% cPR in both small and large HCC tumors. In conclusion, the reported success for achieving cPR in HCC following RFA and MWA is highly variable in different studies and decreases with increasing lesion size and unfavorable tumor characteristics. Very few studies have reported a high rate of cPR. As these studies are single-center and retrospective, they need to be further validated and reproduced in other clinical settings.

12.
Int J Hyperthermia ; 35(1): 559-567, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30303437

RESUMO

OBJECTIVE: A molecular dynamics approach to understanding fundamental mechanisms of combined thermal and osmotic stress induced by thermochemical ablation (TCA) is presented. METHODS: Structural models of fibronectin and fibronectin bound to its integrin receptor provide idealized models for the effects of thermal and osmotic stress in the extracellular matrix. Fibronectin binding to integrin is known to facilitate cell survival. The extracellular environment produced by TCA at the lesion boundary was modelled at 37 °C and 43 °C with added sodium chloride (NaCl) concentrations (0, 40, 80, 160, and 320 mM). Atomistic simulations of solvated proteins were performed using the GROMOS96 force field and TIP3P water model. Computational results were compared with the results of viability studies of human hepatocellular carcinoma (HCC) cell lines HepG2 and Hep3B under matching thermal and osmotic experimental conditions. RESULTS: Cell viability was inversely correlated with hyperthermal and hyperosmotic stresses. Added NaCl concentrations were correlated with a root mean square fluctuation increase of the fibronectin arginylglycylaspartic acid (RGD) binding domain. Computed interaction coefficients demonstrate preferential hydration of the protein model and are correlated with salt-induced strengthening of hydrophobic interactions. Under the combined hyperthermal and hyperosmotic stress conditions (43 °C and 320 mM added NaCl), the free energy change required for fibronectin binding to integrin was less favorable than that for binding under control conditions (37 °C and 0 mM added NaCl). CONCLUSION: Results quantify multiple measures of structural changes as a function of temperature increase and addition of NaCl to the solution. Correlations between cell viability and stability measures suggest that protein aggregates, non-functional proteins, and less favorable cell attachment conditions have a role in TCA-induced cell stress.


Assuntos
Febre/fisiopatologia , Simulação de Dinâmica Molecular , Pressão Osmótica/fisiologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares
13.
PLoS One ; 13(7): e0200471, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30011300

RESUMO

RATIONALE: Advances in image-guided drug delivery for liver cancer have shown a significant survival benefit. However, incomplete treatment is common and residual disease is often found in explanted liver specimens. In addition, the need to treat a malignancy from multiple mechanisms at the same time for optimal outcomes is becoming more widely appreciated. To address this, we hypothesized that an exothermic chemical reaction could be performed in situ. Such a strategy could in principle combine several angles of attack, including ischemia, hyperthermia, acidic protein denaturation, and metabolic modulation of the local environment. METHODS: The University of Texas MD Anderson Cancer Center Institutional Animal Care and Use Committee approved this study. Outbred swine (25-35 kg, 5 control and 5 experimental) were treated under general anesthesia. Embolization was performed with coaxial microcatheter technique in a segmental hepatic arterial branch using either ethiodized oil as control or with thermoembolic solutionBlood samples were obtained before, immediately after, and the day following the procedure just before CT scans and euthanasia. Livers were explanted and samples were obtained for histologic analysis. RESULTS: All animals survived the procedure and laboratory values of the control and experimental groups remained within normal limits. The control group had a diffuse or cloudy pattern of attenuation on follow-up CT scan the day after, consistent with gradual antegrade sinusoidal transit of the embolic material. The experimental group had clearly defined vascular casts with some degree of peripheral involvement. At histology, the control group samples had the appearance of normal liver, whereas the experimental group had coagulative necrosis in small pale, punctate areas extending several hundred microns away from the treated vessels and a brisk inflammatory response just outside the margins. CONCLUSION: In situ chemistry via thermoembolization shows early promise as a fundamentally new tactic for image-guided therapy of solid tumors.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Embolização Terapêutica/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Animais , Sistemas de Liberação de Medicamentos/instrumentação , Feminino , Fígado/diagnóstico por imagem , Fígado/metabolismo , Neoplasias Hepáticas/veterinária , Masculino , Suínos , Doenças dos Suínos/diagnóstico por imagem , Doenças dos Suínos/tratamento farmacológico
14.
Cardiovasc Intervent Radiol ; 41(10): 1611-1617, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29872896

RESUMO

PURPOSE: Embolotherapies are commonly used for management of primary liver cancer. Explant studies of treated livers, however, reveal an untreated tumor in a high fraction of cases. To improve on this, we propose a new concept referred to as thermoembolization. In this technique, the embolic material reacts in local tissues. Highly localized heat energy is released simultaneously with the generation of acid in the target vascular bed. Combined with ischemia, this should provide a multiplexed attack. We report herein our initial results testing the feasibility of this method in vivo. MATERIALS AND METHODS: Institutional approval was obtained, and three outbred swine were treated in a segmental hepatic artery branch (right or left medial lobe) with thermoembolic material (100, 400, or 500 µL). Solutions (2 or 4 mol/L) of an acid chloride were made using ethiodized oil as the vehicle. Animals were housed overnight, scanned by CT, and euthanized. Necropsy samples of treated tissue were obtained for histologic analysis. RESULTS: All animals survived the procedure. Vascular stasis occurred rapidly in all cases despite the small volumes used. The lower concentration (2 mol/L) penetrated more distally than the 4 mol/L solution. At CT the following day, vascular casts of ethiodized oil were observed, indicating recanalization had not occurred. Histology specimens demonstrated coagulative necrosis centered on the vessel lumen extending for several hundred microns with a peripheral inflammatory infiltrate. CONCLUSIONS: Thermoembolization is a new technique for embolization with initial promise. However, results indicate much work must be done to optimize the technique.


Assuntos
Ácido Dicloroacético/administração & dosagem , Embolização Terapêutica/métodos , Artéria Hepática/patologia , Fígado/patologia , Animais , Angiografia por Tomografia Computadorizada , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Óleo Etiodado/administração & dosagem , Estudos de Viabilidade , Artéria Hepática/diagnóstico por imagem , Humanos , Fígado/diagnóstico por imagem , Necrose , Suínos
15.
Ann Biomed Eng ; 46(7): 947-959, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29594687

RESUMO

Ablation is a common procedure for treating patients with cancer, cardiac arrhythmia, and other conditions, yet it can cause collateral injury to the respiratory diaphragm. Collateral injury can alter the diaphragm's properties and/or lead to respiratory dysfunction. Thus, it is important to understand the diaphragm's physiologic and biomechanical properties in response to ablation therapies, in order to better understand ablative modalities, minimize complications, and maximize the safety and efficacy of ablative procedures. In this study, we analyzed physiologic and biomechanical properties of swine respiratory diaphragm muscle bundles when exposed to 5 ablative modalities. To assess physiologic properties, we performed in vitro tissue bath studies and measured changes in peak force and baseline force. To assess biomechanical properties, we performed uniaxial stress tests, measuring force-displacement responses, stress-strain characteristics, and avulsion forces. After treating the muscle bundles with all 5 ablative modalities, we observed dose-dependent sustained reductions in peak force and transient increases in baseline force-but no consistent dose-dependent biomechanical responses. These data provide novel insights into the effects of various ablative modalities on the respiratory diaphragm, insights that could enable improvements in ablative techniques and therapies.


Assuntos
Técnicas de Ablação , Diafragma/fisiopatologia , Diafragma/cirurgia , Modelos Biológicos , Estresse Mecânico , Animais , Diafragma/patologia , Suínos
16.
J Clin Med ; 4(12): 1989-97, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26690234

RESUMO

MicroRNAs are small (~22 nt), noncoding RNA molecules that have critical cellular functions in proliferation, differentiation, angiogenesis and apoptosis. miRNA expression profiling has been used to create signatures of solid tumors and, in many cases, it has been shown to correlate with the severity of the disease. The rabbit VX2 tumor model has been used widely to study a number of human cancers. Our objective in this study is to generate an miRNA signature of the VX2 tumor and to identify miRNAs that are highly expressed in this aggressive tumor. In this study, we performed miRNA profiling of the rabbit VX2 tumor using a microarray that has probes for 1292 unique miRNAs. Their expression in tumor samples was quantified and analyzed. We found that 35 miRNAs were significantly up-regulated in the VX2 tumor. Among these, 13 human miRNAs and eight members of the let-7 family were previously identified in cancers. In addition, we show that the expression of three miRNAs (miR-923, miR-1275, and miR-1308) is novel for the rabbit VX2 tumor, and their expression was not previously shown to be associated with any type of cancer. For the first time, we show the miRNA signature profile for a solid tumor in a rabbit model. miRNAs highly expressed in the VX2 tumor may serve as novel candidates for molecular biomarkers and as potential drug targets.

17.
Int J Hyperthermia ; 29(1): 71-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23311380

RESUMO

PURPOSE: This study aimed to investigate two readily available electrophilic reagents, acetyl chloride (AcCl), and acetic anhydride (Ac(2)O), for their potential in tissue ablation. MATERIALS AND METHODS: Reagents were diluted in diglyme as solutions up to 8 mol/L and tested in a gel phantom with NaOH solutions and ex vivo in porcine liver. Temperature, pH, and volume measurements were obtained. Infrared and gross pathological images were obtained in bisected specimens immediately after injection. RESULTS: AcCl was much more reactive than Ac(2)O and AcCl was therefore used in the tissue studies. Temperature increases of up to 37°C were noted in vitro and 30°C in ex vivo tissues using 4 mol/L AcCl solutions. Experiments at 8 mol/L were abandoned due to the extreme reactivity at this higher concentration. A change in pH of up to 4 log units was noted with 4 mol/L solutions of AcCl with slight recovery over time. Ablated volumes were consistently higher than injected volumes. CONCLUSIONS: Reaction of electrophiles in tissues shows promise as a new thermochemical ablation technique by means of only a single reagent. Further studies in this area are warranted.


Assuntos
Técnicas de Ablação/métodos , Acetatos/administração & dosagem , Anidridos Acéticos/administração & dosagem , Cloretos/administração & dosagem , Fígado/cirurgia , Acetatos/química , Ácido Acético/química , Anidridos Acéticos/química , Animais , Cloretos/química , Etilenoglicóis/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise , Éteres Metílicos/química , Suínos
18.
Arch Toxicol ; 87(2): 227-47, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23007558

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary malignant tumor that accounts for ~80 % of all liver cancer cases worldwide. It is a multifactorial disease caused by a variety of risk factors and often develops in the background of underlying cirrhosis. A number of cellular phenomena, such as tumor microenvironment, inflammation, oxidative stress, and hypoxia act in concert with various molecular events to facilitate tumor initiation, progression, and metastasis. The emergence of microRNAs and molecular-targeted therapies adds a new dimension in our efforts to combat this deadly disease. Intense research in this multitude of areas has led to significant progress in our understanding of cellular processes and molecular mechanisms that occur during multistage events that lead to hepatocarcinogenesis. In this review, we discuss the current knowledge of HCC, focusing mainly on advances that have occurred during the past 5 years and on the development of novel therapeutics for liver cancer.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/fisiopatologia , Carcinoma Hepatocelular/terapia , Hipóxia Celular , Humanos , Inflamação , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatologia , Neoplasias Hepáticas/terapia , MicroRNAs/genética , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/patologia , Estresse Oxidativo , Microambiente Tumoral/genética
19.
Vet J ; 194(3): 369-74, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22749116

RESUMO

Porcine hepatocytes are potentially important in liver regeneration and in the treatment of humans with acute and chronic liver diseases. Induced pluripotent stem (iPS) cells are a valuable source of hepatocytes for these applications as they have unlimited potential to propagate in vitro. An efficient and robust differentiation of iPS cells generated from porcine fetal fibroblasts into functional hepatocyte-like cells in vitro is reported. The methodology followed a three-step differentiation protocol using several growth factors, namely, activin A, basic fibroblast growth factor, bone morphogenetic protein-4, and oncostatin M. Porcine iPS cell-derived hepatocyte-like (piPS-Hep) cells were characterized by morphological analysis and were tested for the expression of hepatocyte-specific genes using RT-PCR. Functional analyses for albumin production and glycogen storage were also carried out. These differentiated hepatocyte-like cells could represent a valuable source for studies of drug metabolism and for cell transplantation therapy for a variety of liver disorders.


Assuntos
Hepatócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Transcrição Kruppel-Like/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Proteína da Região Y Determinante do Sexo/metabolismo , Animais , Diferenciação Celular , Feto , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Reação em Cadeia da Polimerase , Suínos
20.
Technol Cancer Res Treat ; 11(5): 467-73, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22775334

RESUMO

Solid tumors such as hepatocellular carcinoma are very often not amenable to chemotherapy and radiotherapy. Local ablation methods, including chemical ablation with absolute ethanol, are therefore an option for treatment but lack of information about the mechanism of devitalization leading to cell death is a hindrance to further adoption. Systemic toxicity also has limited the amount of ethanol that can be used in a single treatment session. Therefore we evaluated the mechanism of urea, a denaturant with little or no systemic toxicity, for potential use in chemical ablation. In this study we report on the use of three methods to analyze the effects in cell culture with a view towards eventual clinical application. Human hepatoma HuH-7 cells were analyzed at several time points after treatment using FTIR, DSC, and Raman microspectroscopy based on MTT and PI-exclusion viability assays. Time course fractional denaturation data plotted against viability show that a 50% viability drop occurs after only a 10-20% drop in overall protein denaturation. Other methods of cell death such as apoptosis may also be operative, but this result implies that protein denaturation is one of the major mechanisms of cell death. This is in line with what has been previously suggested for purely thermal methods, and opens the way to mechanism-based improvements in chemical ablation of solid tumors.


Assuntos
Técnicas de Ablação , Sobrevivência Celular/efeitos dos fármacos , Desnaturação Proteica , Ureia/farmacologia , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral , Humanos , Neoplasias/terapia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA