Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(4): 107, 2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-36967403

RESUMO

In mammals, meiotic recombination is initiated by the introduction of DNA double strand breaks (DSBs) into narrow segments of the genome, defined as hotspots, which is carried out by the SPO11/TOPOVIBL complex. A major player in the specification of hotspots is PRDM9, a histone methyltransferase that, following sequence-specific DNA binding, generates trimethylation on lysine 4 (H3K4me3) and lysine 36 (H3K36me3) of histone H3, thus defining the hotspots. PRDM9 activity is key to successful meiosis, since in its absence DSBs are redirected to functional sites and synapsis between homologous chromosomes fails. One protein factor recently implicated in guiding PRDM9 activity at hotspots is EWS, a member of the FET family of proteins that also includes TAF15 and FUS/TLS. Here, we demonstrate that FUS/TLS partially colocalizes with PRDM9 on the meiotic chromosome axes, marked by the synaptonemal complex component SYCP3, and physically interacts with PRDM9. Furthermore, we show that FUS/TLS also interacts with REC114, one of the axis-bound SPO11-auxiliary factors essential for DSB formation. This finding suggests that FUS/TLS is a component of the protein complex that promotes the initiation of meiotic recombination. Accordingly, we document that FUS/TLS coimmunoprecipitates with SPO11 in vitro and in vivo. The interaction occurs with both SPO11ß and SPO11α splice isoforms, which are believed to play distinct functions in the formation of DSBs in autosomes and male sex chromosomes, respectively. Finally, using chromatin immunoprecipitation experiments, we show that FUS/TLS is localized at H3K4me3-marked hotspots in autosomes and in the pseudo-autosomal region, the site of genetic exchange between the XY chromosomes.


Assuntos
Lisina , Proteína FUS de Ligação a RNA , Animais , Masculino , Lisina/genética , Proteína FUS de Ligação a RNA/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Recombinação Homóloga , DNA/metabolismo , Meiose/genética , Mamíferos/metabolismo
2.
Cancers (Basel) ; 14(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35681602

RESUMO

We investigated the p75 Neurotrophin Receptor (p75NTR) expression and cleavage product p75NTR Intracellular Domain (p75ICD) as potential oncogenic and metastatic markers in human Laryngeal Squamous Cell Carcinoma (LSCC). p75NTR is highly expressed in Cancer Stem Cells (CSCs) of the laryngeal epithelia and it has been proposed as a marker for stemness, cell migration, and chemo-resistance in different squamous carcinomas. To investigate the clinical significance of p75NTR cleavage products in solid tumors, full-length and cleaved p75NTR expression was analyzed in laryngeal primary tumors from different-stage LSCC patients, diagnosed at the Policlinico Umberto I Hospital. Molecular and histological techniques were used to detect the expressions of p75NTR and p75ICD, and ATP Binding Cassette Subfamily G Member 2 (ABCG2), a CSC marker. We found regulated p75NTR cleavage during squamous epithelial tumor progression and tissue invasion. Our preliminary investigation suggests p75ICD expression and localization as possible features of tumorigenesis and metastaticity. Its co-localization with ABCG2 in squamous cells in the parenchyma invaded by the tumor formation allows us to hypothesize p75NTR and p75ICD roles in tumor invasion and CSC spreading in LSCC patients. These data might represent a starting point for a comprehensive analysis of p75NTR cleavage and of its clinical relevance as a potential molecular LSCC signature, possibly helping diagnosis, and improving prognosis and personalized therapy.

3.
Elife ; 42015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25706231

RESUMO

Actin filament dynamics govern many key physiological processes from cell motility to tissue morphogenesis. A central feature of actin dynamics is the capacity of filaments to polymerize and depolymerize at their ends in response to cellular conditions. It is currently thought that filament kinetics can be described by a single rate constant for each end. In this study, using direct visualization of single actin filament elongation, we show that actin polymerization kinetics at both filament ends are strongly influenced by the binding of proteins to the lateral filament surface. We also show that the pointed-end has a non-elongating state that dominates the observed filament kinetic asymmetry. Estimates of flexibility as well as effects on fragmentation and growth suggest that the observed kinetic diversity arises from structural alteration. Tuning elongation kinetics by exploiting the malleability of the filament structure may be a ubiquitous mechanism to generate a rich variety of cellular actin dynamics.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Transporte/metabolismo , Microscopia de Fluorescência/métodos , Polimerização , Citoesqueleto de Actina/ultraestrutura , Actinina/metabolismo , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Algoritmos , Animais , Moléculas de Adesão Celular/metabolismo , Galinhas , Filaminas/metabolismo , Cinética , Proteínas dos Microfilamentos/metabolismo , Microscopia Eletrônica , Modelos Biológicos , Método de Monte Carlo , Miosinas/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Células Sf9 , Spodoptera
4.
J Cell Biol ; 206(5): 635-54, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25179631

RESUMO

The actin filament severing protein cofilin-1 (CFL-1) is required for actin and P-type ATPase secretory pathway calcium ATPase (SPCA)-dependent sorting of secretory proteins at the trans-Golgi network (TGN). How these proteins interact and activate the pump to facilitate cargo sorting, however, is not known. We used purified proteins to assess interaction of the cytoplasmic domains of SPCA1 with actin and CFL-1. A 132-amino acid portion of the SPCA1 phosphorylation domain (P-domain) interacted with actin in a CFL-1-dependent manner. This domain, coupled to nickel nitrilotriacetic acid (Ni-NTA) agarose beads, specifically recruited F-actin in the presence of CFL-1 and, when expressed in HeLa cells, inhibited Ca(2+) entry into the TGN and secretory cargo sorting. Mutagenesis of four amino acids in SPCA1 that represent the CFL-1 binding site also affected Ca(2+) import into the TGN and secretory cargo sorting. Altogether, our findings reveal the mechanism of CFL-1-dependent recruitment of actin to SPCA1 and the significance of this interaction for Ca(2+) influx and secretory cargo sorting.


Assuntos
Actinas/metabolismo , Sinalização do Cálcio , ATPases Transportadoras de Cálcio/metabolismo , Cofilina 1/fisiologia , Cálcio/fisiologia , ATPases Transportadoras de Cálcio/genética , Células HeLa , Humanos , Mutação Puntual , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Via Secretória
5.
Proc Natl Acad Sci U S A ; 111(31): 11347-52, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25059720

RESUMO

p150(glued) belongs to a group of proteins accumulating at microtubule plus ends (+TIPs). It plays a key role in initiating retrograde transport by recruiting and tethering endosomes and dynein to microtubules. p150(glued) contains an N-terminal microtubule-binding cytoskeleton-associated protein glycine-rich (CAP-Gly) domain that accelerates tubulin polymerization. Although this copolymerization is well-studied using light microscopic techniques, structural consequences of this interaction are elusive. Here, using electron-microscopic and spectroscopic approaches, we provide a detailed structural view of p150(glued) CAP-Gly binding to microtubules and tubulin. Cryo-EM 3D reconstructions of p150(glued)-CAP-Gly complexed with microtubules revealed the recognition of the microtubule surface, including tubulin C-terminal tails by CAP-Gly. These binding surfaces differ from other retrograde initiation proteins like EB1 or dynein, which could facilitate the simultaneous attachment of all accessory components. Furthermore, the CAP-Gly domain, with its basic extensions, facilitates lateral and longitudinal interactions of tubulin molecules by covering the tubulin acidic tails. This shielding effect of CAP-Gly and its basic extensions may provide a molecular basis of the roles of p150(glued) in microtubule dynamics.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Temperatura Baixa , Microscopia Crioeletrônica , Complexo Dinactina , Dineínas/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Processamento de Imagem Assistida por Computador , Cinética , Microtúbulos/ultraestrutura , Peptídeos/química , Peptídeos/metabolismo , Polimerização , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Deleção de Sequência , Relação Estrutura-Atividade , Tubulina (Proteína)/ultraestrutura
6.
Biophys J ; 102(4): 907-15, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22385862

RESUMO

The molecular conformation of proteins is sensitive to the nature of the aqueous environment. In particular, the presence of ions can stabilize or destabilize (denature) protein secondary structure. The underlying mechanisms of these actions are still not fully understood. Here, we combine circular dichroism (CD), single-molecule Förster resonance energy transfer, and atomistic computer simulations to elucidate salt-specific effects on the structure of three peptides with large α-helical propensity. CD indicates a complex ion-specific destabilization of the α-helix that can be rationalized by using a single salt-free computer simulation in combination with the recently introduced scheme of ion-partitioning between nonpolar and polar peptide surfaces. Simulations including salt provide a molecular underpinning of this partitioning concept. Furthermore, our single-molecule Förster resonance energy transfer measurements reveal highly compressed peptide conformations in molar concentrations of NaClO(4) in contrast to strong swelling in the presence of GdmCl. The compacted states observed in the presence of NaClO(4) originate from a tight ion-backbone network that leads to a highly heterogeneous secondary structure distribution and an overall lower α-helical content that would be estimated from CD. Thus, NaClO(4) denatures by inducing a molten globule-like structure that seems completely off-pathway between a fully folded helix and a coil state.


Assuntos
Peptídeos/química , Proteínas/química , Sequência de Aminoácidos , Transferência Ressonante de Energia de Fluorescência , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Percloratos/farmacologia , Desnaturação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Sais/farmacologia , Compostos de Sódio/farmacologia
7.
Biophys J ; 95(11): 5216-27, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18775962

RESUMO

Although the mechanism by which a kinesin-1 molecule moves individually along a microtubule is quite well-understood, the way that many kinesin-1 motor proteins bound to the same cargo move together along a microtubule is not. We identified a 60-amino-acid-long domain, termed Hinge 1, in kinesin-1 from Drosophila melanogaster that is located between the coiled coils of the neck and stalk domains. Its deletion reduces microtubule gliding speed in multiple-motor assays but not single-motor assays. Hinge 1 thus facilitates the cooperation of motors by preventing them from impeding each other. We addressed the structural basis for this phenomenon. Video-microscopy of single microtubule-bound full-length motors reveals the sporadic occurrence of high-compliance states alternating with longer-lived, low-compliance states. The deletion of Hinge 1 abolishes transitions to the high-compliance state. Based on Fourier transform infrared, circular dichroism, and fluorescence spectroscopy of Hinge 1 peptides, we propose that low-compliance states correspond to an unexpected structured organization of the central Hinge 1 region, whereas high-compliance states correspond to the loss of that structure. We hypothesize that strain accumulated during multiple-kinesin motility populates the high-compliance state by unfolding helical secondary structure in the central Hinge 1 domain flanked by unordered regions, thereby preventing the motors from interfering with each other in multiple-motor situations.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Movimento , Sequência de Aminoácidos , Animais , Elasticidade , Humanos , Camundongos , Microtúbulos/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Temperatura
8.
Nat Methods ; 5(7): 605-7, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18536722

RESUMO

Live imaging of the actin cytoskeleton is crucial for the study of many fundamental biological processes, but current approaches to visualize actin have several limitations. Here we describe Lifeact, a 17-amino-acid peptide, which stained filamentous actin (F-actin) structures in eukaryotic cells and tissues. Lifeact did not interfere with actin dynamics in vitro and in vivo and in its chemically modified peptide form allowed visualization of actin dynamics in nontransfectable cells.


Assuntos
Actinas/metabolismo , Corantes/química , Peptídeos/química , Coloração e Rotulagem/métodos , Animais , Células Cultivadas , Citoesqueleto/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Microscopia de Fluorescência , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Proc Natl Acad Sci U S A ; 101(5): 1183-8, 2004 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-14734813

RESUMO

The motor protein kinesin couples a temporally periodic chemical cycle (the hydrolysis of ATP) to a spatially periodic mechanical cycle (movement along a microtubule). To distinguish between different models of such chemical-to-mechanical coupling, we measured the speed of movement of conventional kinesin along microtubules in in vitro motility assays over a wide range of substrate (ATP) and product (ADP and inorganic phosphate) concentrations. In the presence and absence of products, the dependence of speed on [ATP] was well described by the Michaelis-Menten equation. In the absence of products, the K(M) (the [ATP] required for half-maximal speed) was 28 +/- 1 microM, and the maximum speed was 904 nm/s. P(i) behaved as a competitive inhibitor with K(I) = 9 +/- 1 mM. ADP behaved approximately as a competitive inhibitor with K(I) = 35 +/- 2 microM. The data were compared to four-state kinetic models in which changes in nucleotide state are coupled to chemical and/or mechanical changes. We found that the deviation from competitive inhibition by ADP was inconsistent with models in which P(i) is released before ADP. This is surprising because all known ATPases (and GTPases) with high structural similarity to the motor domains of kinesin release P(i) before ADP (or GDP). Our result is therefore inconsistent with models, such as one-headed and inchworm mechanisms, in which the hydrolysis cycle takes place on one head only. However, it is simply explained by hand-over-hand models in which ADP release from one head precedes P(i) release from the other.


Assuntos
Difosfato de Adenosina/farmacologia , Cinesinas/antagonistas & inibidores , Fosfatos/farmacologia , Cinética , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA