Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38699518

RESUMO

The personalised oncology paradigm remains challenging to deliver despite technological advances in genomics-based identification of actionable variants combined with the increasing focus of drug development on these specific targets. To ensure we continue to build concerted momentum to improve outcomes across all cancer types, financial, technological and operational barriers need to be addressed. For example, complete integration and certification of the 'molecular tumour board' into 'standard of care' ensures a unified clinical decision pathway that both counteracts fragmentation and is the cornerstone of evidence-based delivery inside and outside of a research setting. Generally, integrated delivery has been restricted to specific (common) cancer types either within major cancer centres or small regional networks. Here, we focus on solutions in real-world integration of genomics, pathology, surgery, oncological treatments, data from clinical source systems and analysis of whole-body imaging as digital data that can facilitate cost-effectiveness analysis, clinical trial recruitment, and outcome assessment. This urgent imperative for cancer also extends across the early diagnosis and adjuvant treatment interventions, individualised cancer vaccines, immune cell therapies, personalised synthetic lethal therapeutics and cancer screening and prevention. Oncology care systems worldwide require proactive step-changes in solutions that include inter-operative digital working that can solve patient centred challenges to ensure inclusive, quality, sustainable, fair and cost-effective adoption and efficient delivery. Here we highlight workforce, technical, clinical, regulatory and economic challenges that prevent the implementation of precision oncology at scale, and offer a systematic roadmap of integrated solutions for standard of care based on minimal essential digital tools. These include unified decision support tools, quality control, data flows within an ethical and legal data framework, training and certification, monitoring and feedback. Bridging the technical, operational, regulatory and economic gaps demands the joint actions from public and industry stakeholders across national and global boundaries.

2.
BMC Bioinformatics ; 14: 147, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23635078

RESUMO

BACKGROUND: The use of tissue microarrays (TMA) and advances in digital scanning microscopy has enabled the collection of thousands of tissue images. There is a need for software tools to annotate, query and share this data amongst researchers in different physical locations. RESULTS: We have developed an open source web-based application for remote scoring of TMA images, which exploits the value of Microsoft Silverlight Deep Zoom to provide a intuitive interface for zooming and panning around digital images. We use and extend existing XML-based standards to ensure that the data collected can be archived and that our system is interoperable with other standards-compliant systems. CONCLUSION: The application has been used for multi-centre scoring of TMA slides composed of tissues from several Phase III breast cancer trials and ten different studies participating in the International Breast Cancer Association Consortium (BCAC). The system has enabled researchers to simultaneously score large collections of TMA and export the standardised data to integrate with pathological and clinical outcome data, thereby facilitating biomarker discovery.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Software , Análise Serial de Tecidos/métodos , Neoplasias da Mama/patologia , Feminino , Humanos , Internet
3.
BMC Med Genomics ; 2: 66, 2009 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-19948017

RESUMO

BACKGROUND: In molecular profiling studies of cancer patients, experimental and clinical data are combined in order to understand the clinical heterogeneity of the disease: clinical information for each subject needs to be linked to tumour samples, macromolecules extracted, and experimental results. This may involve the integration of clinical data sets from several different sources: these data sets may employ different data definitions and some may be incomplete. METHODS: In this work we employ semantic web techniques developed within the CancerGrid project, in particular the use of metadata elements and logic-based inference to annotate heterogeneous clinical information, integrate and query it. RESULTS: We show how this integration can be achieved automatically, following the declaration of appropriate metadata elements for each clinical data set; we demonstrate the practicality of this approach through application to experimental results and clinical data from five hospitals in the UK and Canada, undertaken as part of the METABRIC project (Molecular Taxonomy of Breast Cancer International Consortium). CONCLUSION: We describe a metadata approach for managing similarities and differences in clinical datasets in a standardized way that uses Common Data Elements (CDEs). We apply and evaluate the approach by integrating the five different clinical datasets of METABRIC.


Assuntos
Neoplasias da Mama/diagnóstico , Sistemas de Gerenciamento de Base de Dados/normas , Genômica/métodos , Neoplasias da Mama/patologia , Biologia Computacional/métodos , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA