Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 20(6): 764-775, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29136244

RESUMO

Background: Clinical trials of therapies directed against nodes of the signaling axis of phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin (mTOR) in glioblastoma (GBM) have had disappointing results. Resistance to mTOR inhibitors limits their efficacy. Methods: To determine mechanisms of resistance to chronic mTOR inhibition, we performed tandem screens on patient-derived GBM cultures. Results: An unbiased phosphoproteomic screen quantified phosphorylation changes associated with chronic exposure to the mTOR inhibitor rapamycin, and our analysis implicated a role for glycogen synthase kinase (GSK)3B attenuation in mediating resistance that was confirmed by functional studies. A targeted short hairpin RNA screen and further functional studies both in vitro and in vivo demonstrated that microtubule-associated protein (MAP)1B, previously associated predominantly with neurons, is a downstream effector of GSK3B-mediated resistance. Furthermore, we provide evidence that chronic rapamycin induces microtubule stability in a MAP1B-dependent manner in GBM cells. Additional experiments explicate a signaling pathway wherein combinatorial extracellular signal-regulated kinase (ERK)/mTOR targeting abrogates inhibitory phosphorylation of GSK3B, leads to phosphorylation of MAP1B, and confers sensitization. Conclusions: These data portray a compensatory molecular signaling network that imparts resistance to chronic mTOR inhibition in primary, human GBM cell cultures and points toward new therapeutic strategies.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Interferente Pequeno/genética , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
PLoS One ; 11(11): e0164649, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27855170

RESUMO

We present here a novel genetic algorithm-based random forest (GARF) modeling technique that enables a reduction in the complexity of large gene disease signatures to highly accurate, greatly simplified gene panels. When applied to 803 glioblastoma multiforme samples, this method allowed the 840-gene Verhaak et al. gene panel (the standard in the field) to be reduced to a 48-gene classifier, while retaining 90.91% classification accuracy, and outperforming the best available alternative methods. Additionally, using this approach we produced a 32-gene panel which allows for better consistency between RNA-seq and microarray-based classifications, improving cross-platform classification retention from 69.67% to 86.07%. A webpage producing these classifications is available at http://simplegbm.semel.ucla.edu.


Assuntos
Neoplasias Encefálicas/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Glioblastoma/genética , Transcriptoma , Algoritmos , Neoplasias Encefálicas/mortalidade , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Glioblastoma/mortalidade , Humanos , Estimativa de Kaplan-Meier , Anotação de Sequência Molecular , Prognóstico , Reprodutibilidade dos Testes , Navegador
3.
Mol Cancer Ther ; 15(6): 1271-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27196770

RESUMO

Inhibition of both the de novo (DNP) and salvage (NSP) pathways of nucleoside synthesis has been demonstrated to impair leukemia cells. We endeavored to determine whether this approach would be efficacious in glioblastoma. To diminish nucleoside biosynthesis, we utilized compound DI-39, which selectively targets NSP, in combination with thymidine (dT), which selectively targets DNP. We employed in vitro and ex vivo models to determine the effects of pretreatment with dT + DI-39 on brain tumor stem cells (BTSC). Here, we demonstrate that this combinatorial therapy elicits a differential response across a spectrum of human patient-derived glioblastoma cultures. As determined by apoptotic markers, most cultures were relatively resistant to treatment, although a subset was highly sensitive. Sensitivity was unrelated to S-phase delay and to DNA damage induced by treatment. Bioinformatics analysis indicated that response across cultures was associated with the transcription factor PAX3 (associated with resistance) and with canonical pathways, including the nucleotide excision repair pathway, PTEN (associated with resistance), PI3K/AKT (associated with sensitivity), and ErbB2-ErbB3. Our in vitro assays demonstrated that, in sensitive cultures, clonal sphere formation was reduced upon removal from pretreatment. In contrast, in a resistant culture, clonal sphere formation was slightly increased upon removal from pretreatment. Moreover, in an intracranial xenograft model, pretreatment of a sensitive culture caused significantly smaller and fewer tumors. In a resistant culture, tumors were equivalent irrespective of pretreatment. These results indicate that, in the subset of sensitive glioblastoma, BTSCs are targeted by inhibition of pyrimidine synthesis. Mol Cancer Ther; 15(6); 1271-8. ©2016 AACR.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Desoxicitidina Quinase/antagonistas & inibidores , Inibidores Enzimáticos/administração & dosagem , Glioblastoma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Pirimidinas/administração & dosagem , Sulfonamidas/administração & dosagem , Timidina/administração & dosagem , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/farmacologia , Glioblastoma/metabolismo , Humanos , Camundongos , Fator de Transcrição PAX3/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Timidina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Neuro Oncol ; 18(10): 1367-78, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27116978

RESUMO

BACKGROUND: Gliomasphere cultures are widely utilized for the study of glioblastoma (GBM). However, this model system is not well characterized, and the utility of current classification methods is not clear. METHODS: We used 71 gliomasphere cultures from 68 individuals. Using gene expression-based classification, we performed unsupervised clustering and associated gene expression with gliomasphere phenotypes and patient survival. RESULTS: Some aspects of the gene expression-based classification method were robust because the gliomasphere cultures retained their classification over many passages, and IDH1 mutant gliomaspheres were all proneural. While gene expression of a subset of gliomasphere cultures was more like the parent tumor than any other tumor, gliomaspheres did not always harbor the same classification as their parent tumor. Classification was not associated with whether a sphere culture was derived from primary or recurrent GBM or associated with the presence of EGFR amplification or rearrangement. Unsupervised clustering of gliomasphere gene expression distinguished 2 general categories (mesenchymal and nonmesenchymal), while multidimensional scaling distinguished 3 main groups and a fourth minor group. Unbiased approaches revealed that PI3Kinase, protein kinase A, mTOR, ERK, Integrin, and beta-catenin pathways were associated with in vitro measures of proliferation and sphere formation. Associating gene expression with gliomasphere phenotypes and patient outcome, we identified genes not previously associated with GBM: PTGR1, which suppresses proliferation, and EFEMP2 and LGALS8, which promote cell proliferation. CONCLUSIONS: This comprehensive assessment reveals advantages and limitations of using gliomaspheres to model GBM biology, and provides a novel strategy for selecting genes for future study.


Assuntos
Perfilação da Expressão Gênica/métodos , Glioblastoma/genética , Células Tumorais Cultivadas , Western Blotting , Técnicas de Cultura de Células/métodos , Análise por Conglomerados , Redes Reguladoras de Genes , Glioblastoma/classificação , Glioblastoma/patologia , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
5.
J Biol Chem ; 288(2): 964-73, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23188832

RESUMO

Glutamate transporters in the brain remove the neurotransmitter from the synapse by cotransport with three sodium ions into the surrounding cells. Recent structural work on an archaeal homolog suggests that, during substrate translocation, the transport domain, including the peripheral transmembrane helix 3 (TM3), moves relative to the trimerization domain in an elevator-like process. Moreover, two TM3 residues have been proposed to form part of a transient Na3' site, and another, Tyr-124, appears close to both Na3' and Na1. To obtain independent evidence for the role of TM3 in glutamate transport, each of its 31 amino acid residues from the glial GLT-1 transporter was individually mutated to cysteine. Except for six mutants, substantial transport activity was detected. Aqueous accessibility of the introduced cysteines was probed with membrane-permeant and membrane-impermeant sulfhydryl reagents under a variety of conditions. Transport of six single cysteine mutants, all located on the intracellular side of TM3, was affected by membrane-permeant sulfhydryl reagents. However, only at two positions could ligands modulate the reactivity. A120C reactivity was diminished under conditions expected to favor the outward-facing conformation of the transporter. Sulfhydryl modification of Y124C by 2-aminoethyl methanethiosulfonate, but not by N-ethylmaleimide, was fully protected in the presence of sodium. Our data are consistent with the idea that TM3 moves during transport. Moreover, computational modeling indicated that electrostatic repulsion between the positive charge introduced at position 124 and the sodium ions bound at Na3' and Na1 underlies the protection by sodium.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Encéfalo/metabolismo , Cisteína/genética , Proteínas de Membrana/metabolismo , Mutagênese , Sistema X-AG de Transporte de Aminoácidos/química , Sistema X-AG de Transporte de Aminoácidos/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Conformação Proteica , Reagentes de Sulfidrila/química
6.
Proc Natl Acad Sci U S A ; 106(49): 20752-7, 2009 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-19926849

RESUMO

Glutamate transporters regulate synaptic concentrations of this neurotransmitter by coupling its flux to that of sodium and other cations. Available crystal structures of an archeal homologue of these transporters, GltPh, resemble an extracellular-facing state, in which the bound substrate is occluded only by a small helical hairpin segment called HP2. However, a pathway to the cytoplasmic side of the membrane is not clearly apparent. We previously modeled an alternate state of a transporter from the neurotransmitter:sodium symporter family, which has an entirely different fold, solely on the presence of inverted-topology structural repeats. In GltPh, we identified two distinct sets of inverted-topology repeats and used these repeats to model an inward-facing conformation of the protein. To test this model, we introduced pairs of cysteines into the neuronal glutamate transporter EAAC1, at positions that are >27 A apart in the crystal structures of GltPh, but approximately = 10 A apart in the inward-facing model. Transport by these mutants was activated by pretreatment with the reducing agent dithithreitol. Subsequent treatment with the oxidizing agent copper(II)(1,10-phenantroline)(3) abolished this activation. The inhibition of transport was potentiated under conditions thought to promote the inward-facing conformation of the transporter. By contrast, the inhibition was reduced in the presence of the nontransportable substrate analogue D,L-threo-beta-benzyloxyaspartate, which favors the outward-facing conformation. Other conformation-sensitive accessibility measurements are also accommodated by our inward-facing model. These results suggest that the inclusion of inverted-topology repeats in transporters may provide a general solution to the requirement for two symmetry-related states in a single protein.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/química , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Pyrococcus horikoshii/metabolismo , Sequências Repetitivas de Aminoácidos , Sistema X-AG de Transporte de Aminoácidos/antagonistas & inibidores , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Proteínas Arqueais/antagonistas & inibidores , Transporte Biológico/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Cisteína/metabolismo , Citoplasma/química , Citoplasma/efeitos dos fármacos , Ditiotreitol/farmacologia , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fenantrolinas/farmacologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pyrococcus horikoshii/efeitos dos fármacos , Coelhos , Especificidade por Substrato/efeitos dos fármacos , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA