Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087165

RESUMO

Cystatin B (CSTB) is a small protease inhibitor protein being involved in cell proliferation and neuronal differentiation. Loss-of-function mutations in CSTB gene cause progressive myoclonic epilepsy 1 (EPM1). We previously demonstrated that CSTB is locally synthesized in synaptic nerve terminals from rat brain and secreted into the media, indicating its role in synaptic plasticity. In this work, we have further investigated the involvement of CSTB in synaptic plasticity, using synaptosomes from human cerebral organoids (hCOs) as well as from rodents' brain. Our data demonstrate that CSTB is released from synaptosomes in two ways: (i) as a soluble protein and (ii) in extracellular vesicles-mediated pathway. Synaptosomes isolated from hCOs are enriched in pre-synaptic proteins and contain CSTB at all developmental stages analyzed. CSTB presence in the synaptic territories was also confirmed by immunostaining on human neurons in vitro. To investigate if the depletion of CSTB affects synaptic plasticity, we characterized the synaptosomes from EPM1 hCOs. We found that the levels of presynaptic proteins and of an initiation factor linked to local protein synthesis were both reduced in EPM1 hCOs and that the extracellular vesicles trafficking pathway was impaired. Moreover, EPM1 neurons displayed anomalous morphology with longer and more branched neurites bearing higher number of intersections and nodes, suggesting connectivity alterations. In conclusion, our data strengthen the idea that CSTB plays a critical role in the synapse physiology and reveal that pathologically low levels of CSTB may affect synaptic plasticity, leading to synaptopathy and altered neuronal morphology.

2.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266269

RESUMO

The cytoskeleton and its associated proteins present at the plasma membrane not only determine the cell shape but also modulate important aspects of cell physiology such as intracellular transport including secretory and endocytic pathways. Continuous remodeling of the cell structure and intense communication with extracellular environment heavily depend on interactions between cytoskeletal elements and plasma membrane. This review focuses on the plasma membrane-cytoskeleton interface in neurons, with a special emphasis on the axon and nerve endings. We discuss the interaction between the cytoskeleton and membrane mainly in two emerging topics of neurobiology: (i) production and release of extracellular vesicles and (ii) local synthesis of new proteins at the synapses upon signaling cues. Both of these events contribute to synaptic plasticity. Our review provides new insights into the physiological and pathological significance of the cytoskeleton-membrane interface in the nervous system.


Assuntos
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Neurônios/fisiologia , Transdução de Sinais , Animais , Axônios/metabolismo , Comunicação Celular , Suscetibilidade a Doenças , Vesículas Extracelulares , Humanos , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , Plasticidade Neuronal , Biossíntese de Proteínas , Sinapses/metabolismo
3.
EMBO Mol Med ; 12(6): e11419, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32378798

RESUMO

Progressive myoclonus epilepsy (PME) of Unverricht-Lundborg type (EPM1) is an autosomal recessive neurodegenerative disorder with the highest incidence of PME worldwide. Mutations in the gene encoding cystatin B (CSTB) are the primary genetic cause of EPM1. Here, we investigate the role of CSTB during neurogenesis in vivo in the developing mouse brain and in vitro in human cerebral organoids (hCOs) derived from EPM1 patients. We find that CSTB (but not one of its pathological variants) is secreted into the mouse cerebral spinal fluid and the conditioned media from hCOs. In embryonic mouse brain, we find that functional CSTB influences progenitors' proliferation and modulates neuronal distribution by attracting interneurons to the site of secretion via cell-non-autonomous mechanisms. Similarly, in patient-derived hCOs, low levels of functional CSTB result in an alteration of progenitor's proliferation, premature differentiation, and changes in interneurons migration. Secretion and extracellular matrix organization are the biological processes particularly affected as suggested by a proteomic analysis in patients' hCOs. Overall, our study sheds new light on the cellular mechanisms underlying the development of EPM1.


Assuntos
Síndrome de Unverricht-Lundborg , Animais , Proliferação de Células , Cistatina B/genética , Humanos , Interneurônios , Camundongos , Neurogênese , Proteômica
4.
Front Mol Neurosci ; 12: 195, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467503

RESUMO

Cystatin B (CSTB) is a ubiquitous protein belonging to a superfamily of protease inhibitors. CSTB may play a critical role in brain physiology because its mutations cause progressive myoclonic epilepsy-1A (EPM1A), the most common form of progressive myoclonic epilepsy. However, the molecular mechanisms underlying the role of CSTB in the central nervous system (CNS) are largely unknown. To investigate the possible involvement of CSTB in the synaptic plasticity, we analyzed its expression in synaptosomes as a model system in studying the physiology of the synaptic regions of the CNS. We found that CSTB is not only present in the synaptosomes isolated from rat and mouse brain cortex, but also secreted into the medium in a depolarization-controlled manner. In addition, using biorthogonal noncanonical amino acid tagging (BONCAT) procedure, we demonstrated, for the first time, that CSTB is locally synthesized in the synaptosomes. The synaptic localization of CSTB was confirmed in a human 3D model of cortical development, namely cerebral organoids. Altogether, these results suggest that CSTB may play a role in the brain plasticity and open a new perspective in studying the involvement of CSTB deregulation in neurodegenerative and neuropsychiatric diseases.

5.
Front Physiol ; 9: 818, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30034345

RESUMO

Scope: The hypothalamus is a key brain region involved in the control of feeding and energy expenditure. Hypothalamic inflammation and oxidative stress are landmarks of both obesity and aging processes, although the molecular mechanisms are still unknown. Therefore, with the aim to understand the neurobiological mechanisms of energy homeostasis during aging, we evaluate the effects of long feeding high-fat diet (HFD) in rats, at different age, on modulation of hypothalamic molecular pathway, oxidative stress, and inflammation. Procedures: Male Wistar rats were divided into two groups: control group, receiving standard diet (CD), and treated group, receiving HFD. Both groups were treated with the appropriate diet for 1, 3, 6, 12, or 18 weeks. We investigated energy balance and body composition, as well as lipid profile, homeostatic model assessment index, and inflammatory state in serum. Furthermore, we also analyzed, at hypothalamic level, inflammation and oxidative stress, and adenosine monophosphate-dependent kinase (AMPK) and pAMPK expression levels. Results: Our data showed that aging and HFD induce increased energy intake and energy efficiency and decreased energy expenditure associated, at hypothalamic level, with inflammation and oxidative stress and activation of AMPK. Conclusion: Our results indicate that the age at which HFD feeding starts and the diet duration are critical in obesity development. The prolonged activation of hypothalamic AMPK may be related to the alterations in energy homeostasis.

6.
Diabetes ; 66(5): 1405-1418, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28223285

RESUMO

Fatty liver, oxidative stress, and mitochondrial dysfunction are key pathophysiological features of insulin resistance and obesity. Butyrate, produced by fermentation in the large intestine by gut microbiota, and its synthetic derivative, the N-(1-carbamoyl-2-phenyl-ethyl) butyramide, FBA, have been demonstrated to be protective against insulin resistance and fatty liver. Here, hepatic mitochondria were identified as the main target of the beneficial effect of both butyrate-based compounds in reverting insulin resistance and fat accumulation in diet-induced obese mice. In particular, butyrate and FBA improved respiratory capacity and fatty acid oxidation, activated the AMPK-acetyl-CoA carboxylase pathway, and promoted inefficient metabolism, as shown by the increase in proton leak. Both treatments consistently increased utilization of substrates, especially fatty acids, leading to the reduction of intracellular lipid accumulation and oxidative stress. Finally, the shift of the mitochondrial dynamic toward fusion by butyrate and FBA resulted in the improvement not only of mitochondrial cell energy metabolism but also of glucose homeostasis. In conclusion, butyrate and its more palatable synthetic derivative, FBA, modulating mitochondrial function, efficiency, and dynamics, can be considered a new therapeutic strategy to counteract obesity and insulin resistance.


Assuntos
Butiratos/farmacologia , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/efeitos dos fármacos , Acetil-CoA Carboxilase/metabolismo , Animais , Western Blotting , Composição Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Células Hep G2 , Homeostase/efeitos dos fármacos , Humanos , Fígado/metabolismo , Fígado/ultraestrutura , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias Hepáticas/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real
7.
Front Cell Neurosci ; 10: 150, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375435

RESUMO

The high fat diet (HFD) rich in lard induces obesity, inflammation and oxidative stress, and the deregulation of hypothalamic nuclei plays an important role in this mechanism. One important factor involved in the food intake and inflammation is adenosine monophosphate-dependent kinase (AMPK), a serine/threonine kinase activated by phosphorylation. Omega (ω)3-polyunsaturated fatty acids (PUFA) are dietary compounds known to attenuate the obesity-related diseases, although the molecular mechanisms underlying their actions in the hypothalamus are not completely understood. We hypothesized that the beneficial effects of PUFA may be mediated by AMPK in the hypothalamus. To this aim, rats were fed a control diet (CD), or isocaloric HFD containing either fish oil (FD; rich in ω3-PUFA) or lard for 6 weeks, and the activation of AMPK, inflammatory state (IKKß, TNF-α) and oxidative stress were analyzed in the hypothalamus. In addition, we also studied serum lipid profile, homeostatic model assessment (HOMA) index, and pro-inflammatory parameters. Our results showed, at the hypothalamic level of LD-fed rats, an increase of AMPK activation, inflammation and oxidative stress, while no modifications were detected in FD-fed animals compared to CD. In addition body weight gain, serum lipid profile, pro-inflammatory parameters and insulin resistance were reduced in FD animals compared to LD. In conclusion, our data indicate that the substitution of saturated by unsaturated fatty acids in the diet has beneficial effects on modulation of hypothalamic inflammation and function in obesity, underlying, at hypothalamic level, the interaction among insulin and/or leptin resistance, AMPK activation and hyperphagia.

8.
Front Cell Neurosci ; 9: 479, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696835

RESUMO

Obesity and dietary fats are well known risk factors for the pathogenesis of neurodegenerative diseases. The analysis of specific markers, whose brain level can be affected by diet, might contribute to unveil the intersection between inflammation/obesity and neurodegeneration. Haptoglobin (Hpt) is an acute phase protein, which acts as antioxidant by binding free haemoglobin (Hb), thus neutralizing its pro-oxidative action. We previously demonstrated that Hpt plays critical functions in brain, modulating cholesterol trafficking in neuroblastoma cell lines, beta-amyloid (Aß) uptake by astrocyte, and limiting Aß toxicity on these cells. A major aim of this study was to evaluate whether a long term (12 or 24 weeks) high-fat diet (HFD) influences Hpt and Hb expression in rat hippocampus. We also assessed the development of obesity-induced inflammation by measuring hippocampal level of TNF-alpha, and the extent of protein oxidation by titrating nitro-tyrosine (N-Tyr). Hpt concentration was lower (p < 0.001) in hippocampus of HFD rats than in control animals, both in the 12 and in the 24 weeks fed groups. HFD was also associated in hippocampus with the increase of Hb level (p < 0.01), inflammation and protein oxidative modification, as evidenced by the increase in the concentration of TNF-alpha and nitro-tyrosine. In fact, TNF-alpha concentration was higher in rats receiving HFD for 12 (p < 0.01) or 24 weeks (p < 0.001) compared to those receiving the control diet. N-Tyr concentration was more elevated in hippocampus of HFD than in control rats in both 12 weeks (p = 0.04) and 24 weeks groups (p = 0.01), and a positive correlation between Hb and N-Tyr concentration was found in each group. Finally, we found that the treatment of the human glioblastoma-astrocytoma cell line U-87 MG with cholesterol and fatty acids, such as palmitic and linoleic acid, significantly impairs (p < 0.001) Hpt secretion in the extracellular compartment. We hypothesize that the HFD-dependent decrease of Hpt in hippocampus, as associated with Hb increase, might enhance the oxidative stress induced by free Hb. Altogether our data, identifying Hpt as a molecule modulated in the brain by dietary fats, may represent one of the first steps in the comprehension of the molecular mechanisms underlying the diet-related effects in the nervous system.

9.
Front Cell Neurosci ; 8: 212, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25140128

RESUMO

Alteration in cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative disorders. Apolipoprotein E (ApoE) is the major component of brain lipoproteins supporting cholesterol transport. We previously reported that the acute-phase protein Haptoglobin (Hpt) binds ApoE, and influences its function in blood cholesterol homeostasis. Major aim of this study was to investigate whether Hpt influences the mechanisms by which cholesterol is shuttled from astrocytes to neurons. In detail it was studied Hpt effect on ApoE-dependent cholesterol efflux from astrocytes and ApoE-mediated cholesterol incorporation in neurons. We report here that Hpt impairs ApoE-mediated cholesterol uptake in human neuroblastoma cell line SH-SY5Y, and limits the toxicity of a massive concentration of cholesterol for these cells, while it does not affect cholesterol efflux from the human glioblastoma-astrocytoma cell line U-87 MG. As aging is the most important non-genetic risk factor for various neurodegenerative disorders, and our results suggest that Hpt modulates ApoE functions, we evaluated the Hpt and ApoE expression profiles in cerebral cortex and hippocampus of adolescent (2 months), adult (5 and 8 months), and middle-aged (16 months) rats. Hpt mRNA level was higher in hippocampus of 8 and 16 month-old than in 2-month old rats (p < 0.05), and Hpt concentration increased with the age from adolescence to middle-age (p < 0.001). ApoE concentration, in hippocampus, was higher (p < 0.001) in 5 month-old rats compared to 2 month but did not further change with aging. No age-related changes of Hpt (protein and mRNA) were found in the cortex. Our results suggest that aging is associated with changes, particularly in the hippocampus, in the Hpt/ApoE ratio. Age-related changes in the concentration of Hpt were also found in human cerebrospinal fluids. The age-related changes might affect neuronal function and survival in brain, and have important implications in brain pathophysiology.

10.
J Neurochem ; 104(2): 545-57, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17961153

RESUMO

Periaxoplasmic ribosomal plaques (PARPs) are periodic structural formations containing ribosomes, which are likely cortical sites of translation along myelinated fibers. beta-actin mRNA, and its trans-acting binding factor, zipcode-binding protein-1, were co-distributed within PARP domains of axoplasmic whole-mounts isolated from goldfish Mauthner, rabbit and rat nerve fibers. The distribution of co-localization signals of fluorophore pixels, however, was asymmetric in PARP domains, possibly indicative of endpoint trafficking of RNPs. beta-actin mRNA in RNA extracted from axoplasm of single Mauthner fibers was confirmed by RT-PCR. A metabolically active isolated Mauthner fiber system, which required cAMP to activate translation, was developed in order to probe cycloheximide-sensitivity, and the importance of the actin cytoskeleton. cAMP greatly stimulated protein synthesis in axoplasm after a period of pre-incubation, while being inhibited strongly by cycloheximide, or by cytochalasin D. Cytochalasin D reduced incorporation only modestly in the associated myelin sheath. We conclude that mechanisms for targeting and localizing beta-actin mRNA to discrete PARP domains are probably similar to those described for dendritic synaptic domains. Moreover, optimal translation in axoplasm depends on the integrity of the actin cytoskeleton, and can be modulated by cAMP as well.


Assuntos
Actinas/genética , Axônios/metabolismo , AMP Cíclico/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Animais , Carpa Dourada , Hibridização In Situ/métodos , Técnicas In Vitro , RNA Mensageiro/metabolismo , Coelhos , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Medula Espinal/citologia
11.
Exp Neurol ; 185(1): 109-19, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14697322

RESUMO

In the developing central nervous system, a src-related protein-tyrosine kinase fyn participates in the myelination process, neuronal growth, and cytoskeletal organization. In adults, fyn has been implicated in learning and memory formation. To test if fyn expression is modulated by neuronal activity, we performed quantitative in situ hybridization (ISH) using brain sections of the adult rats that had undergone either kainic acid (KA)-induced seizures or neuronal deafferentation (entorhinal cortex lesion, ECL). In the KA model, a few hours after seizure activities, fyn mRNA was elevated in the dentate gyrus (DG) (+45%), cerebral cortex layer III (+35%), and piriform cortex (+25%). Conversely, fyn mRNA consistently decreased in the hippocampal neurons after transection of the major axonal inputs from the entorhinal cortex. Although fyn expression in the brain has been allegedly limited to neurons and oligodendrocytes, we provide in this study the first evidence that fyn mRNA is highly expressed in the astrocytes involved in reactive gliosis. In the KA model, the occurrence of fyn-overexpressing astrocytes increased with the progress of neuronal damage in the CA1 and CA3 regions of the hippocampus. In contrast, fyn-overexpressing astrocytes were not observed in the granular cell layer of dentate gyrus (DG), where neurons were not damaged. Likewise, in the ECL model, the most drastic change in fyn mRNA expression took place at the reactive astrocytes near the stab wound sites, where fyn mRNA levels were doubled 4-10 d after the lesion. Collectively, our data suggest that (i) an early induction of fyn mRNA in neurons is linked to neuronal activity, and (ii) the delayed induction of fyn mRNA in reactive astrocytes near the damaged cells may play novel signaling roles during glial response.


Assuntos
Astrócitos/enzimologia , Dano Encefálico Crônico/enzimologia , Neurônios/enzimologia , Proteínas Proto-Oncogênicas/metabolismo , Convulsões/enzimologia , Animais , Astrócitos/patologia , Western Blotting , Dano Encefálico Crônico/patologia , Dano Encefálico Crônico/fisiopatologia , Morte Celular , Células Cultivadas , Modelos Animais de Doenças , Córtex Entorrinal/patologia , Córtex Entorrinal/fisiopatologia , Indução Enzimática , Ácido Caínico , Masculino , Camundongos , Neurônios/patologia , Especificidade de Órgãos , Via Perfurante/fisiopatologia , Via Perfurante/cirurgia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-fyn , Sondas RNA/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA