Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(1): 586-602, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37991993

RESUMO

Finding a therapy for ischemia-reperfusion injury, which consists of cell death following restoration of blood flowing into the artery affected by ischemia, is a strong medical need. Nowadays, only the use of broad-spectrum molecular therapies has demonstrated a partial efficacy in protecting the organs following reperfusion, while randomized clinical trials focused on more specific drug targets have failed. In order to overcome this problem, we applied a combination of molecular modeling and chemical synthesis to identify novel spiropiperidine-based structures active in mitochondrial permeability transition pore opening inhibition as a key process to enhance cell survival after blood flow restoration. Our results were confirmed by biological assay on an in vitro cell model on HeLa and human renal proximal tubular epithelial cells and pave the way to further investigation on an in vivo model system.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Traumatismo por Reperfusão , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Oligomicinas , Traumatismo por Reperfusão/tratamento farmacológico , Poro de Transição de Permeabilidade Mitocondrial , Células Epiteliais/metabolismo
2.
Bioorg Med Chem Lett ; 72: 128822, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636649

RESUMO

Maintaining a high percentage of living and functional cells in those pathologies in which excessive cell death occurs, such as neurodegenerative disorders and cardiovascular diseases, is one of the most intriguing challenges in the field of biochemical research for drug discovery. Here, mitochondrial permeability transition-driven regulated cell death is the main mechanism of mitochondrial impairment and cell fate; this pathway is still lacking of satisfying pharmacological treatments to counteract its becoming; for this reason, it needs continuous and intense research to find new compounds as modulator of the permeability transition pore complex (PTPC) activity. In this study, we report the identification of small-molecule urea derivatives able to inhibit PTPC opening following calcium overload and selected for future use in cytoprotection.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Ureia , Trifosfato de Adenosina/metabolismo , Azirinas , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Fosfatidilcolinas , Ureia/metabolismo , Ureia/farmacologia
3.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216142

RESUMO

Biocatalyzed synthesis can be exploited to produce high-value products, such as prodrugs. The replacement of chemical approaches with biocatalytic processes is advantageous in terms of environmental prevention, embracing the principles of green chemistry. In this work, we propose the covalent attachment of xylitol to ibuprofen to produce an IBU-xylitol ester prodrug. Xylitol was chosen as a hydrophilizer for the final prodrug, enhancing the water solubility of ibuprofen. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) extensively used as an analgesic, anti-inflammatory, and antipyretic. Despite being the third-most-prescribed medicine in the world, the aqueous solubility of ibuprofen is just 21 mg/L. This poor water solubility greatly limits the bioavailability of ibuprofen. We aimed to functionalize ibuprofen with xylitol using the reusable immobilized N435 biocatalyst. Instead of a biphasic media, we proposed a monophasic reaction environment. The characterization of the IBU-xylitol ester was performed by 1H, 13C-NMR, DEPT, COSY, HMQC, HMBC, FTIR, and MS spectroscopy. Preliminary in vitro tests showed that this enzymatically synthesized prodrug of ibuprofen reduced the expression of the interleukin 8 genes in human bronchial epithelial cells (IB3-1) from cystic fibrosis (CF) patients.


Assuntos
Ibuprofeno/química , Pró-Fármacos/química , Xilitol/química , Analgésicos/química , Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Biocatálise , Disponibilidade Biológica , Linhagem Celular , Fibrose Cística/tratamento farmacológico , Ésteres/química , Humanos , Ibuprofeno/farmacologia , Pró-Fármacos/farmacologia , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA