Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895969

RESUMO

Chronic, low-grade inflammation has been implicated in aging and age-dependent conditions, including Alzheimer's disease, cardiomyopathy, and cancer. One of the age-associated processes underlying chronic inflammation is protein aggregation, which is implicated in neuroinflammation and a broad spectrum of neurodegenerative diseases such as Alzheimer's, Huntington's, and Parkinson's diseases. We screened a panel of bioactive thiadiazolidinones (TDZDs) from our in-house library for rescue of protein aggregation in human-cell and C. elegans models of neurodegeneration. Among the tested TDZD analogs, PNR886 and PNR962 were most effective, significantly reducing both the number and intensity of Alzheimer-like tau and amyloid aggregates in human cell-culture models of pathogenic aggregation. A C. elegans strain expressing human Aß1-42 in muscle, leading to AD-like amyloidopathy, developed fewer and smaller aggregates after PNR886 or PNR962 treatment. Moreover, age-progressive paralysis was reduced 90% by PNR886 and 75% by PNR962, and "healthspan" (the median duration of spontaneous motility) was extended 29% and 62%, respectively. These TDZD analogs also extended wild-type C. elegans lifespan by 15-30% (p < 0.001), placing them among the most effective life-extension drugs. Because the lead drug in this family, TDZD-8, inhibits GSK3ß, we used molecular-dynamic tools to assess whether these analogs may also target GSK3ß. In silico modeling predicted that PNR886 or PNR962 would bind to the same allosteric pocket of inactive GSK3ß as TDZD-8, employing the same pharmacophore but attaching with greater avidity. PNR886 and PNR962 are thus compelling candidate drugs for treatment of tau- and amyloid-associated neurodegenerative diseases such as AD, potentially also reducing all-cause mortality.

2.
Front Toxicol ; 4: 936149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591540

RESUMO

Hepatocellular carcinoma (HCC) is both a devastating and common disease. Every year in the United States, about 24,500 men and 10,000 women are diagnosed with HCC, and more than half of those diagnosed patients die from this disease. Thus far, conventional therapeutics have not been successful for patients with HCC due to various underlying comorbidities. Poor survival rate and high incidence of recurrence after therapy indicate that the differences between the redox environments of normal surrounding liver and HCC are valuable targets to improve treatment efficacy. Parthenolide (PTL) is a naturally found therapeutic with anti-cancer and anti-inflammatory properties. PTL can alter HCC's antioxidant environment through thiol modifications leaving tumor cells sensitive to elevated reactive oxygen species (ROS). Investigating the link between altered thiol mechanism and increased sensitivity to iron-mediated lipid peroxidation will allow for improved treatment of HCC. HepG2 (human) and McARH7777 (rat) HCC cells treated with PTL with increasing concentrations decrease cell viability and clonogenic efficiency in vitro. PTL increases glutathione (GSH) oxidation rescued by the addition of a GSH precursor, N-acetylcysteine (NAC). In addition, this elevation in thiol oxidation results in an overall increase in mitochondrial dysfunction. To elucidate if cell death is through lipid peroxidation, using a lipid peroxidation sensor indicated PTL increases lipid oxidation levels after 6 h. Additionally, western blotting reveals glutathione peroxidase 4 (GPx4) protein levels decrease after treatment with PTL suggesting cells are incapable of preventing lipid peroxidation after exposure to PTL. An elevation in lipid peroxidation will lead to a form of cell death known as ferroptosis. To further establish ferroptosis as a critical mechanism of death for HCC in vitro, the addition of ferrostatin-1 combined with PTL demonstrates a partial recovery in a colony survival assay. This study reveals that PTL can induce tumor cell death through elevations in intracellular oxidation, leaving cells sensitive to ferroptosis.

3.
Int J Mol Sci ; 22(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34639060

RESUMO

Glioblastoma (GBM) is highly resistant to treatment and invasion into the surrounding brain is a cancer hallmark that leads to recurrence despite surgical resection. With the emergence of precision medicine, patient-derived 3D systems are considered potentially robust GBM preclinical models. In this study, we screened a library of 22 anti-invasive compounds (i.e., NF-kB, GSK-3-B, COX-2, and tubulin inhibitors) using glioblastoma U-251 MG cell spheroids. We evaluated toxicity and invasion inhibition using a 3D Matrigel invasion assay. We next selected three compounds that inhibited invasion and screened them in patient-derived glioblastoma organoids (GBOs). We developed a platform using available macros for FIJI/ImageJ to quantify invasion from the outer margin of organoids. Our data demonstrated that a high-throughput invasion screening can be done using both an established cell line and patient-derived 3D model systems. Tubulin inhibitor compounds had the best efficacy with U-251 MG cells, however, in ex vivo patient organoids the results were highly variable. Our results indicate that the efficacy of compounds is highly related to patient intra and inter-tumor heterogeneity. These results indicate that such models can be used to evaluate personal oncology therapeutic strategies.


Assuntos
Bancos de Espécimes Biológicos , Neoplasias Encefálicas/patologia , Descoberta de Drogas , Glioblastoma/patologia , Organoides , Medicina de Precisão , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Glioblastoma/tratamento farmacológico , Humanos , Invasividade Neoplásica , Medicina de Precisão/métodos , Esferoides Celulares , Técnicas de Cultura de Tecidos
4.
Eur J Med Chem ; 224: 113675, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34229108

RESUMO

Melampomagnolide B (MMB, 3) is a parthenolide (PTL, 1) based sesquiterpene lactone that has been used as a template for the synthesis of a plethora of lead anticancer agents owing to its reactive C-10 primary hydroxyl group. Such compounds have been shown to inhibit the IKKß subunit, preventing phosphorylation of the cytoplasmic IκB inhibitory complex. The present study focuses on the synthesis and in vitro antitumor properties of novel benzyl and phenethyl carbamates of MMB (7a-7k). Screening of these MMB carbamates identified analogs with potent growth inhibition properties against a panel of 60 human cancer cell lines (71% of the molecules screened had GI50 values < 2 µM). Two analogs, the benzyl carbamate 7b and the phenethyl carbamate7k, were the most active compounds. Lead compound 7b inhibited cell proliferation in M9 ENL AML cells, and in TMD-231, OV-MD-231 and SUM149 breast cancer cell lines. Interestingly, mechanistic studies showed that 7b did not inhibit p65 phosphorylation in M9 ENL AML and OV-MD-231 cells, but did inhibit phophorylation of both p65 and IκBα in SUM149 cells. 7b also reduced NFκB binding to DNA in both OV-MD-231 and SUM149 cells. Molecular docking studies indicated that 7b and 7k are both predicted to interact with the ubiquitin-like domain (ULD) of the IKKß subunit. These data suggest that in SUM149 cells, 7b is likely acting as an allosteric inhibitor of IKKß, whereas in M9 ENL AML and OV-MD-231 cells 7b is able to inhibit an event after IκB/p65/p50 phosphorylation by IKKß that leads to inhibition of NFκB activation and reduction in NFκB-DNA binding. Analog 7b was by far the most potent compound in either carbamate series, and was considered an important lead compound for further optimization and development as an anticancer agent.


Assuntos
Antineoplásicos/química , NF-kappa B/antagonistas & inibidores , Sesquiterpenos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lactonas/química , Simulação de Acoplamento Molecular , NF-kappa B/química , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Domínios Proteicos , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacologia , Relação Estrutura-Atividade , Termodinâmica , Fator de Transcrição RelA/metabolismo
5.
JCSM Rapid Commun ; 4(1): 24-39, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842876

RESUMO

BACKGROUND: Loss of skeletal muscle volume and resulting in functional limitations are poor prognostic markers in breast cancer patients. Several molecular defects in skeletal muscle including reduced MyoD levels and increased protein turn over due to enhanced proteosomal activity have been suggested as causes of skeletal muscle loss in cancer patients. However, it is unknown whether molecular defects in skeletal muscle are dependent on tumor etiology. METHODS: We characterized functional and molecular defects of skeletal muscle in MMTV-Neu (Neu+) mice (n= 6-12), an animal model that represents HER2+ human breast cancer, and compared the results with well-characterized luminal B breast cancer model MMTV-PyMT (PyMT+). Functional studies such as grip strength, rotarod performance, and ex vivo muscle contraction were performed to measure the effects of cancer on skeletal muscle. Expression of muscle-enriched genes and microRNAs as well as circulating cytokines/chemokines were measured. Since NF-κB pathway plays a significant role in skeletal muscle defects, the ability of NF-κB inhibitor dimethylaminoparthenolide (DMAPT) to reverse skeletal muscle defects was examined. RESULTS: Neu+ mice showed skeletal muscle defects similar to accelerated aging. Compared to age and sex-matched wild type mice, Neu+ tumor-bearing mice had lower grip strength (202±6.9 vs. 179±6.8 g grip force, p=0.0069) and impaired rotarod performance (108±12.1 vs. 30±3.9 seconds, P<0.0001), which was consistent with reduced muscle contractibility (p<0.0001). Skeletal muscle of Neu+ mice (n=6) contained lower levels of CD82+ (16.2±2.9 vs 9.0±1.6) and CD54+ (3.8±0.5 vs 2.4±0.4) muscle stem and progenitor cells (p<0.05), suggesting impaired capacity of muscle regeneration, which was accompanied by decreased MyoD, p53 and miR-486 expression in muscles (p<0.05). Unlike PyMT+ mice, which showed skeletal muscle mitochondrial defects including reduced mitochondria levels and Pgc1ß, Neu+ mice displayed accelerated aging-associated changes including muscle fiber shrinkage and increased extracellular matrix deposition. Circulating "aging factor" and cachexia and fibromyalgia-associated chemokine Ccl11 was elevated in Neu+ mice (1439.56±514 vs. 1950±345 pg/ml, p<0.05). Treatment of Neu+ mice with DMAPT significantly restored grip strength (205±6 g force), rotarod performance (74±8.5 seconds), reversed molecular alterations associated with skeletal muscle aging, reduced circulating Ccl11 (1083.26 ±478 pg/ml), and improved animal survival. CONCLUSIONS: These results suggest that breast cancer subtype has a specific impact on the type of molecular and structure changes in skeletal muscle, which needs to be taken into consideration while designing therapies to reduce breast cancer-induced skeletal muscle loss and functional limitations.

6.
Cancer Lett ; 500: 220-227, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33358698

RESUMO

The ability of chemo-radiation therapy to control locally advanced stage III non-small cell lung cancer (NSCLC) is poor. While addition of consolidation immunotherapy has improved outcomes in subsets of patients there is still an urgent need for new therapeutic targets. Emerging research indicates that nucleophosmin1 (NPM1) is over-expressed in NSCLC, promotes tumor growth and that over-expression correlates with a lower survival probability. NPM1 is critical for APE1 base excision activity and for RAD51-mediated repair of DNA double strand breaks (DSBs). YTR107 is a small molecule radiation sensitizer that has been shown to bind to NPM1, suppressing pentamer formation. Here we show that in irradiated cells YTR107 inhibits SUMOylated NPM1 from associating with RAD51, RAD51 foci formation and repair of DSBs. YTR107 acts synergistically with the PARP1/2 inhibitor ABT 888 to increase replication stress and radiation-induced cell lethality. YTR107 was found to radiosensitize tumor initiating cells. Congruent with this knowledge, adding YTR107 to a fractionated irradiation regimen diminished NSCLC xenograft growth and increased overall survival. These data support the hypothesis that YTR107 represents a therapeutic target for control of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Proteínas Nucleares/genética , Rad51 Recombinase/genética , Barbitúricos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Humanos , Indóis/farmacologia , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/radioterapia , Nucleofosmina , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Sumoilação/efeitos dos fármacos , Sumoilação/efeitos da radiação
7.
Sci Rep ; 10(1): 18326, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110096

RESUMO

Glycogen synthase kinase-3ß (GSK3ß) controls many physiological pathways, and is implicated in many diseases including Alzheimer's and several cancers. GSK3ß-mediated phosphorylation of target residues in microtubule-associated protein tau (MAPTAU) contributes to MAPTAU hyperphosphorylation and subsequent formation of neurofibrillary tangles. Inhibitors of GSK3ß protect against Alzheimer's disease and are therapeutic for several cancers. A thiadiazolidinone drug, TDZD-8, is a non-ATP-competitive inhibitor targeting GSK3ß with demonstrated efficacy against multiple diseases. However, no experimental data or models define the binding mode of TDZD-8 with GSK3ß, which chiefly reflects our lack of an established inactive conformation for this protein. Here, we used metadynamic simulation to predict the three-dimensional structure of the inactive conformation of GSK3ß. Our model predicts that phosphorylation of GSK3ß Serine9 would hasten the DFG-flip to an inactive state. Molecular docking and simulation predict the TDZD-8 binding conformation of GSK3ß to be inactive, and are consistent with biochemical evidence for the TDZD-8-interacting residues of GSK3ß. We also identified the pharmacophore and assessed binding efficacy of second-generation TDZD analogs (TDZD-10 and Tideglusib) that bind GSK3ß as non-ATP-competitive inhibitors. Based on these results, the predicted inactive conformation of GSK3ß can facilitate the identification of novel GSK3ß inhibitors of high potency and specificity.


Assuntos
Glicogênio Sintase Quinase 3 beta/química , Tiadiazóis/metabolismo , Sítios de Ligação , Domínio Catalítico , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica
8.
iScience ; 20: 248-264, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31593839

RESUMO

Diagnosis of neurodegenerative diseases hinges on "seed" proteins detected in disease-specific aggregates. These inclusions contain diverse constituents, adhering through aberrant interactions that our prior data indicate are nonrandom. To define preferential protein-protein contacts mediating aggregate coalescence, we created click-chemistry reagents that cross-link neighboring proteins within human, APPSw-driven, neuroblastoma-cell aggregates. These reagents incorporate a biotinyl group to efficiently recover linked tryptic-peptide pairs. Mass-spectroscopy outputs were screened for all possible peptide pairs in the aggregate proteome. These empirical linkages, ranked by abundance, implicate a protein-adherence network termed the "aggregate contactome." Critical hubs and hub-hub interactions were assessed by RNAi-mediated rescue of chemotaxis in aging nematodes, and aggregation-driving properties were inferred by multivariate regression and neural-network approaches. Aspirin, while disrupting aggregation, greatly simplified the aggregate contactome. This approach, and the dynamic model of aggregate accrual it implies, reveals the architecture of insoluble-aggregate networks and may reveal targets susceptible to interventions to ameliorate protein-aggregation diseases.

9.
ACS Chem Biol ; 14(6): 1337-1351, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31082191

RESUMO

Overexpression of human DNA polymerase kappa (hpol κ) in glioblastoma is associated with shorter survival time and resistance to the alkylating agent temozolomide (TMZ), making it an attractive target for the development of small-molecule inhibitors. We previously reported on the development and characterization of indole barbituric acid-derived (IBA) inhibitors of translesion DNA synthesis polymerases (TLS pols). We have now identified a potent and selective inhibitor of hpol κ based on the indole-aminoguanidine (IAG) chemical scaffold. The most promising IAG analogue, IAG-10, exhibited greater inhibitory action against hpol κ than any other human Y-family member, as well as pols from the A-, B-, and X-families. Inhibition of hpol κ by IAG analogues appears to proceed through a mechanism that is distinct from inhibition of hpol η based on changes in DNA binding affinity and nucleotide insertion kinetics. By way of comparison, both IAG and IBA analogues inhibited binary complex formation by hpol κ and ternary complex formation by hpol η. Decreasing the concentration of enzyme and DNA in the reaction mixture lowered the IC50 value of IAG-10 to submicromolar values, consistent with inhibition of binary complex formation for hpol κ. Chemical footprinting experiments revealed that IAG-10 binds to a cleft between the finger, little finger, and N-clasp domains on hpol κ and that this likely disrupts the interaction between the N-clasp and the TLS pol core. In cell culture, IAG-10 potentiated the antiproliferative activity and DNA damaging effects of TMZ in hpol κ-proficient cells but not in hpol κ-deficient cells, indicative of a target-dependent effect. Mutagenic replication across alkylation damage increased in hpol κ-proficient cells treated with IAG-10, while no change in mutation frequency was observed for hpol κ-deficient cells. In summary, we developed a potent and selective small-molecule inhibitor of hpol κ that takes advantage of structural features unique to this TLS enzyme to potentiate TMZ, a standard-of-care drug used in the treatment of malignant brain tumors. Furthermore, the IAG scaffold represents a new chemical space for the exploration of TLS pol inhibitors, which could prove useful as a strategy for improving patient response to genotoxic drugs.


Assuntos
DNA Polimerase Dirigida por DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Alquilação , Dano ao DNA , Humanos , Concentração Inibidora 50
10.
Bioorg Med Chem Lett ; 29(2): 172-178, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528695

RESUMO

A series of novel tetrazole analogues of resveratrol were synthesized and evaluated for their anti-leukemic activity against an extensive panel of human cancer cell lines and against the MV4-11 AML cell line. These molecules were designed as drug-like derivatives of the resveratrol analogue DMU-212 and its cyano derivatives. Four compounds 8g, 8h, 10a and 10b exhibited LD50 values of 4.60 µM, 0.02 µM, 1.46 µM, and 1.08 µM, respectively, against MV4-11 leukemia cells. The most potent compounds, 8h and 10b, were also found to be active against an extensive panel of human hematological and solid tumor cell lines; compound 8h was the most potent compound with GI50 values <10 nM against more than 90% of the human cancer cell lines in the 60-cell panel. Analogues 8g, 8h, 10a and 10b were also tested for their ability to inhibit the polymerization of tubulin, and compound 8h was found to be the most potent analogue. Molecular modeling studies demonstrated that 8h binds to the colchicine binding site on tubulin. Thus, compound 8h is considered to be a lead druglike molecule from this tetrazole series of compounds.


Assuntos
Antineoplásicos/farmacologia , Tetrazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tetrazóis/síntese química , Tetrazóis/química
11.
Drug Alcohol Depend ; 193: 154-161, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30384323

RESUMO

Background Although pharmacotherapies are available for alcohol (EtOH) or tobacco use disorders individually, it may be possible to develop a single pharmacotherapy to treat heavy drinking tobacco smokers by capitalizing on the commonalities in their mechanisms of action. Methods Female alcohol-preferring (P) rats were trained for EtOH drinking and nicotine self-administration in two phases: (1) EtOH alone (0 vs. 15% EtOH, 2-bottle choice) and (2) concomitant access, during which EtOH access continued with access to nicotine (0.03 mg/kg/infusion, i.v.) using a 2-lever choice procedure (active vs. inactive lever) in which the fixed ratio (FR) requirement was gradually increased to FR30. When stable co-use was obtained, rats were pretreated with varying doses of naltrexone, varenicline, or r-bPiDI, an α6ß2* subtype-selective nicotinic acetylcholine receptor antagonist shown previously to reduce nicotine self-administration. Results While EtOH intake was initially suppressed in phase 2 (co-use), pharmacologically relevant intake for both substances was achieved by raising the "price" of nicotine to FR30. In phase 2, naltrexone decreased EtOH and water consumption but not nicotine intake; in contrast, naltrexone in phase 1 (EtOH only) did not significantly alter EtOH intake. Varenicline and r-bPiDI in phase 2 both decreased nicotine self-administration and inactive lever pressing, but neither altered EtOH or water consumption. Conclusions These results indicate that increasing the "price" of nicotine increases EtOH intake during co-use. Additionally, the efficacy of naltrexone, varenicline, and r-bPiDI was specific to either EtOH or nicotine, with no efficacy for co-use. Nevertheless, future studies on combining these treatments may reveal synergistic efficacy.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Naltrexona/uso terapêutico , Picolinas/uso terapêutico , Compostos de Piridínio/uso terapêutico , Tabagismo/tratamento farmacológico , Vareniclina/uso terapêutico , Dissuasores de Álcool/uso terapêutico , Animais , Modelos Animais de Doenças , Etanol/administração & dosagem , Feminino , Nicotina/administração & dosagem , Antagonistas Nicotínicos/farmacologia , Ratos , Autoadministração , Agentes de Cessação do Hábito de Fumar/uso terapêutico , Tabagismo/complicações , Resultado do Tratamento
12.
Drug Dev Res ; 79(6): 287-294, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30295945

RESUMO

Preclinical Research & Development Pancreatic cancer is the third leading cause of death in the US with a poor 5-year survival rate of 8.5%. A novel anti-cancer drug, dimethylamino parthenolide (DMAPT), is the water-soluble analog of the natural sesquiterpene lactone, parthenolide. The putative modes of action of DMAPT are inhibition of the Nuclear chain factor kappa-light-chain enhancer of activated B cells (NFκB) pathway and depletion of glutathione levels; the latter causing cancer cells to be more susceptible to oxidative stress-induced cell death. Actinomycin-D (ActD) is a polypeptide antibiotic that binds to DNA, and inhibits RNA and protein synthesis by inhibiting RNA polymerase II. A phase 2 clinical trial indicated that ActD could be a potent drug against pancreatic cancer; however, it was not a favored drug due to toxicity issues. New drug entities and methods of drug delivery, used alone or in combination, are needed to treat pancreatic cancer more effectively. Thus, it was postulated that combining DMAPT and ActD would result in synergistic inhibition of Panc-1 pancreatic cancer cell growth because DMAPT's inhibition of NFκB would enhance induction of apoptosis by ActD, via phosphorylation of c-Jun, by minimizing NFκB inhibition of c-Jun phosphorylation. Combining these two drugs induced a higher level of cell death than each drug alone. A fixed drug ratio of DMAPT: ActD (1,200:1) was used. Data from metabolic (MTT) and colony formation assays were analyzed for synergism with CompuSyn software, which utilizes the Chou-Talalay equation. The analyses indicated synergism and moderate synergism at combination concentrations of DMAPT/ActD of 12/0.01 and 18/0.015 µM, respectively.


Assuntos
Aminopirina/administração & dosagem , Antibióticos Antineoplásicos/administração & dosagem , Dactinomicina/administração & dosagem , Inibidores do Crescimento/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Antibióticos Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Dactinomicina/efeitos adversos , Combinação de Medicamentos , Sinergismo Farmacológico , Inibidores do Crescimento/efeitos adversos , Humanos , Neoplasias Pancreáticas/patologia , Células Tumorais Cultivadas
13.
J Cell Mol Med ; 22(10): 4899-4912, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30079458

RESUMO

Tyrosine kinase inhibitors (TKI) have become a first-line treatment for chronic myeloid leuakemia (CML). TKIs efficiently target bulk CML cells; however, they are unable to eliminate the leukaemic stem cell (LSC) population that causes resistance and relapse in CML patients. In this study, we assessed the effects of parthenolide (PTL) and dimethyl amino parthenolide (DMAPT), two potent inhibitors of LSCs in acute myeloid leukaemia (AML), on CML bulk and CML primitive (CD34+ lin- ) cells. We found that both agents induced cell death in CML, while having little effect on the equivalent normal hematopoietic cells. PTL and DMAPT caused an increase in reactive oxygen species (ROS) levels and inhibited NF-κB activation. PTL and DMAPT inhibited cell proliferation and induced cell cycle arrest in G0 and G2 phases. Furthermore, we found cell cycle inhibition to correlate with down-regulation of cyclin D1 and cyclin A. In summary, our study shows that PTL and DMAPT have a strong inhibitory effect on CML cells. Given that cell cycle arrest was not dependent on ROS induction, we speculate that this effect could be a direct consequence of NF-κB inhibition and if this mechanism was to be evaded, PTL and DMAPT induced cell death would be potentiated.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Sesquiterpenos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina A/genética , Ciclina D1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , NF-kappa B/genética , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Eur J Med Chem ; 157: 562-581, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30121494

RESUMO

Triazole derivatives of melampomagnolide B (MMB) have been synthesized via click chemistry methodologies and screened against a panel of 60 human cancer cell lines. Several derivatives showed promising anti-cancer activity, affording growth inhibition (GI50) values in the nanomolar range (GI50 = 0.02-0.99 µM). Lead compound 7h exhibited EC50 values of 400 nM and 700 nM, respectively, against two AML clinical specimens. Compound 7h was significantly more potent than parthenolide as an inhibitor of p65 phosphorylation in both hematological and solid tumor cell lines, indicating its ability to inhibit the NF-κB pathway. In TMD-231 breast cancer cells, treatment with 7h reduced DNA binding activity of NF-κB through inhibition of IKK-ß mediated p65 phosphorylation and caused elevation of basal IκBα levels through inhibition of constitutive IκBα turnover and NF-κB activation. Molecular docking and dynamic modeling studies indicated that 7h interacts with the kinase domain of the monomeric IKKß subunit, leading to inhibition of IKKß activation, and compromising phosphorylation of downstream targets of the NF-κB pathway; dynamic modeling studies show that this interaction also causes unwinding of the α-helix of the NEMO binding site on IKKß. Molecular docking studies with 10, a water-soluble analog of 7h, demonstrate that this analog interacts with the dimerization/oligomerization domain of monomeric IKKß and may inhibit oligomer formation and subsequent autophosphorylation. Sesquiterpene lactones 7h and 10 are considered ideal candidates for potential clinical development.


Assuntos
Antineoplásicos/farmacologia , NF-kappa B/antagonistas & inibidores , Sesquiterpenos/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Sesquiterpenos/química , Relação Estrutura-Atividade , Triazóis/química
15.
AAPS J ; 20(2): 29, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29427069

RESUMO

Despite increased methamphetamine use worldwide, pharmacotherapies are not available to treat methamphetamine use disorder. The vesicular monoamine transporter-2 (VMAT2) is an important pharmacological target for discovery of treatments for methamphetamine use disorder. VMAT2 inhibition by the natural product, lobeline, reduced methamphetamine-evoked dopamine release, methamphetamine-induced hyperlocomotion, and methamphetamine self-administration in rats. Compared to lobeline, lobelane exhibited improved affinity and selectivity for VMAT2 over nicotinic acetylcholine receptors. Lobelane inhibited neurochemical and behavioral effects of methamphetamine, but tolerance developed to its behavioral efficacy in reducing methamphetamine self-administration, preventing further development. The lobelane analog, R-N-(1,2-dihydroxypropyl)-2,6-cis-di-(4-methoxyphenethyl)piperidine hydrochloride (GZ-793A), potently and selectively inhibited VMAT2 function and reduced neurochemical and behavioral effects of methamphetamine. However, GZ-793A exhibited potential to induce ventricular arrhythmias interacting with human-ether-a-go-go (hERG) channels. Herein, a new lead, R-3-(4-methoxyphenyl)-N-(1-phenylpropan-2-yl)propan-1-amine (GZ-11610), from the novel scaffold (N-alkyl(1-methyl-2-phenylethyl)amine) was evaluated as a VMAT2 inhibitor and potential therapeutic for methamphetamine use disorder. GZ-11610 was 290-fold selective for VMAT2 over dopamine transporters, suggesting that it may lack abuse liability. GZ-11610 was 640- to 3500-fold selective for VMAT2 over serotonin transporters and nicotinic acetylcholine receptors. GZ-11610 exhibited > 1000-fold selectivity for VMAT2 over hERG, representing a robust improvement relative to our previous VMAT2 inhibitors. GZ-11610 (3-30 mg/kg, s.c. or 56-300 mg/kg, oral) reduced methamphetamine-induced hyperactivity in methamphetamine-sensitized rats. Thus, GZ-11610 is a potent and selective inhibitor of VMAT2, may have low abuse liability and low cardiotoxicity, and after oral administration is effective and specific in inhibiting the locomotor stimulant effects of methamphetamine, suggesting further investigation as a potential therapeutic for methamphetamine use disorder.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/tratamento farmacológico , Lobelina/farmacologia , Metanfetamina/efeitos adversos , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Administração Oral , Transtornos Relacionados ao Uso de Anfetaminas/etiologia , Animais , Cardiotoxicidade/epidemiologia , Cardiotoxicidade/etiologia , Modelos Animais de Doenças , Dopamina/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Lobelina/análogos & derivados , Lobelina/química , Lobelina/uso terapêutico , Locomoção/efeitos dos fármacos , Masculino , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Resultado do Tratamento
16.
Biochemistry ; 57(7): 1262-1273, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29345908

RESUMO

Translesion DNA synthesis (TLS) performed by human DNA polymerase eta (hpol η) allows tolerance of damage from cis-diamminedichloroplatinum(II) (CDDP or cisplatin). We have developed hpol η inhibitors derived from N-aryl-substituted indole barbituric acid (IBA), indole thiobarbituric acid (ITBA), and indole quinuclidine scaffolds and identified 5-((5-chloro-1-(naphthalen-2-ylmethyl)-1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (PNR-7-02), an ITBA derivative that inhibited hpol η activity with an IC50 value of 8 µM and exhibited 5-10-fold specificity for hpol η over replicative pols. We conclude from kinetic analyses, chemical footprinting assays, and molecular docking that PNR-7-02 binds to a site on the little finger domain and interferes with the proper orientation of template DNA to inhibit hpol η. A synergistic increase in CDDP toxicity was observed in hpol η-proficient cells co-treated with PNR-7-02 (combination index values = 0.4-0.6). Increased γH2AX formation accompanied treatment of hpol η-proficient cells with CDDP and PNR-7-02. Importantly, PNR-7-02 did not impact the effect of CDDP on cell viability or γH2AX in hpol η-deficient cells. In summary, we observed hpol η-dependent effects on DNA damage/replication stress and sensitivity to CDDP in cells treated with PNR-7-02. The ability to employ a small-molecule inhibitor of hpol η to improve the cytotoxic effect of CDDP may aid in the development of more effective chemotherapeutic strategies.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , DNA Polimerase Dirigida por DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Humanos , Indóis/química , Indóis/farmacologia , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Pirimidinas/química , Pirimidinas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Tiobarbitúricos/química , Tiobarbitúricos/farmacologia
17.
Anticancer Agents Med Chem ; 18(4): 556-564, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28403783

RESUMO

BACKGROUND: Naphthalene is a good structural replacement for the isovanillin moiety (i.e. the 3- hydroxy-4-methoxyphenyl unit) in the combretastatin A-4 molecule, a natural product structurally related to resveratrol, which consistently led to the generation of highly cytotoxic naphthalene analogues when combined with a 3,4,5-trimethoxyphenyl or related aromatic system. Also, the naphthalene ring system is present in many current drug molecules that are utilized for anti-tumor, anti-arrhythmia and antioxidant therapy. OBJECTIVE: In our continuing quest to improve the potencies of naturally occurring anti-cancer molecules through chemical modification, we have now synthesized a small library of 2-naphthaleno trans- stilbenes and cyanostilbenes that are structurally related to both resveratrol and DMU-212, and have evaluated these novel analogs against a panel of 54 human tumor cell lines. METHOD: A series of 2-naphthaleno-containing trans-stilbenes 3a-3h (Scheme 1) were synthesized by Wittig reaction of a variety of aromatic substituted benzyl-triphenylphosphonium bromide reactants with 2- naphthaldehyde using n-BuLi as a base in THF. A second series of 2-naphthaleno trans-cyanostilbenes analogs 5a-5h was synthesized by reaction of 2-naphthaldehyde (2; 1 mmol) with an appropriately substituted 2- phenylacrylonitrile 4a-4h; 1 mmol) in 5% sodium methoxide/methanol. The reaction mixture was stirred at room temperature for 2-3 hours and the reaction allowed to go to completion (TLC monitoring), during which time the desired product precipitated out of the solution as a solid. The resulting precipitate was filtered off, washed with water and dried to yield the desired compound in yields ranging from 70-95% (Scheme 2). RESULTS: The percentage growth inhibition of 54 human cancer cell lines in a primary NCI screen after exposure to compounds 3a, 3d, 5b and 5c was carried out. The results showed that only compounds 5b and 5c met the criteria for subsequent testing to determine growth inhibition values (GI50) in dose-response studies. At 10-5 M concentration, compounds 5b and 5c exhibited cytotoxic activity against leukemia cell lines HL-60(TB) and SR, lung cancer cell line NCI-H522, colon cancer cell lines COLO 205 and HCT-116, CNS-cancer cell line SF-539, melanoma cell line MDA-MB-435, and breast cancer cell line BT-549. The naphthalene trans-stilbene analogue 3a, exhibited significant growth inhibition against only one cell line, melanoma cell line MDA-MB-435 (96 % growth inhibition). Compound 3d was inactive in the 10-5 M single dose screen. CONCLUSION: We have synthesized a small set of novel 2-naphthaleno stilbenes and cyanostilbenes and evaluated several of these compounds for their anticancer properties against a panel of 54 human tumor cell lines. The most active analogs, 5b and 5c, showed significantly improved growth inhibition against the human cancer cells in the NCI panel when compared to DMU-212. Of these compounds, analog 5c was found to be the most potent anticancer agent and exhibited significant growth inhibitory effects against COLO 205, CNS SF 539 and melanoma SK-MEL 5 and MDA-MB-435 cell lines with GI50 values ≤ 25 nM. Analog 5b also exhibited GI50 values in the range 25-41 nM against CNS SF 295 and melanoma MDA-MB-435 and UACC-62 cell lines. Compounds 5b and 5c were also cytotoxic towards the MV4-11 leukemia cell line with LD50 value of 450 nM and 200 nM, respectively, and demonstrated >50% inhibition of tubulin polymerization at concentrations below their LD50 values in these cells. In silico docking studies suggest that compounds 5b and 5c bind favorably at the colchicine- binding pocket of the tubulin dimer, indicating that both 5b and 5c may inhibit tubulin polymerization through a mechanism similar to that exhibited by colchicine. Derivative 5c demonstrated more favorable binding based on the docking score and buried surface area, as compared to compound 5b, in agreement with the higher observed potency of 5c against a broader range of tumor cell lines. Based on these results, analog 5c is considered to be a lead compound for further optimization as a clinical candidate for treating a variety of cancers.


Assuntos
Antineoplásicos/farmacologia , Naftalenos/farmacologia , Estilbenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Naftalenos/química , Estilbenos/síntese química , Estilbenos/química , Relação Estrutura-Atividade
18.
Mol Cancer Ther ; 16(12): 2747-2758, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28978719

RESUMO

Breast cancer progression is associated with systemic effects, including functional limitations and sarcopenia without the appearance of overt cachexia. Autocrine/paracrine actions of cytokines/chemokines produced by cancer cells mediate cancer progression and functional limitations. The cytokine-inducible transcription factor NF-κB could be central to this process, as it displays oncogenic functions and is integral to the Pax7:MyoD:Pgc-1ß:miR-486 myogenesis axis. We tested this possibility using the MMTV-PyMT transgenic mammary tumor model and the NF-κB inhibitor dimethylaminoparthenolide (DMAPT). We observed deteriorating physical and functional conditions in PyMT+ mice with disease progression. Compared with wild-type mice, tumor-bearing PyMT+ mice showed decreased fat mass, impaired rotarod performance, and reduced grip strength as well as increased extracellular matrix (ECM) deposition in muscle. Contrary to acute cachexia models described in the literature, mammary tumor progression was associated with reduction in skeletal muscle stem/satellite-specific transcription factor Pax7. Additionally, we observed tumor-induced reduction in Pgc-1ß in muscle, which controls mitochondrial biogenesis. DMAPT treatment starting at 6 to 8 weeks age prior to mammary tumor occurrence delayed mammary tumor onset and tumor growth rates without affecting metastasis. DMAPT overcame cancer-induced functional limitations and improved survival, which was accompanied with restoration of Pax7, Pgc-1ß, and mitochondria levels and reduced ECM levels in skeletal muscles. In addition, DMAPT restored circulating levels of 6 out of 13 cancer-associated cytokines/chemokines changes to levels seen in healthy animals. These results reveal a pharmacological approach for overcoming cancer-induced functional limitations, and the above-noted cancer/drug-induced changes in muscle gene expression could be utilized as biomarkers of functional limitations. Mol Cancer Ther; 16(12); 2747-58. ©2017 AACR.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias Mamárias Animais/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Transgênicos
19.
Free Radic Biol Med ; 112: 318-326, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28782644

RESUMO

Constitutive activation of the pro-survival transcription factor NF-κB has been associated with resistance to both chemotherapy and radiation therapy in many human cancers, including prostate cancer. Our lab and others have demonstrated that the natural product parthenolide can inhibit NF-κB activity and sensitize PC-3 prostate cancers cells to X-rays in vitro; however, parthenolide has poor bioavailability in vivo and therefore has little clinical utility in this regard. We show here that treatment of PC-3 and DU145 human prostate cancer cells with dimethylaminoparthenolide (DMAPT), a parthenolide derivative with increased bioavailability, inhibits constitutive and radiation-induced NF-κB binding activity and slows prostate cancer cell growth. We also show that DMAPT increases single and fractionated X-ray-induced killing of prostate cancer cells through inhibition of DNA double strand break repair and also that DMAPT-induced radiosensitization is, at least partially, dependent upon the alteration of intracellular thiol reduction-oxidation chemistry. Finally, we demonstrate that the treatment of PC-3 prostate tumor xenografts with oral DMAPT in addition to radiation therapy significantly decreases tumor growth and results in significantly smaller tumor volumes compared to xenografts treated with either DMAPT or radiation therapy alone, suggesting that DMAPT might have a potential clinical role as a radiosensitizing agent in the treatment of prostate cancer.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , NF-kappa B/antagonistas & inibidores , Neoplasias da Próstata/terapia , Radiossensibilizantes/farmacologia , Sesquiterpenos/farmacologia , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Humanos , Masculino , Camundongos , Camundongos Nus , NF-kappa B/genética , NF-kappa B/metabolismo , Próstata/efeitos dos fármacos , Próstata/metabolismo , Próstata/patologia , Próstata/efeitos da radiação , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Transdução de Sinais , Raios X , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
20.
Bioorg Med Chem ; 25(14): 3694-3705, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28545815

RESUMO

A series of succinamide derivatives of melampomagnolide B have been synthesized by coupling MMB monosuccinate (2) with various heterocyclic amines to afford compounds 3a-3l. MMB monosuccinate was also reacted with terminal diaminoalkanes to afford dimeric succinamido analogs of MMB (4a-4h). These succinamide analogs of MMB were evaluated for their anti-cancer activity against a panel of sixty human cancer cell lines. Analogs 3d-3i and dimers 4f-4g exhibited promising anti-cancer activity with GI50 values ranging from 0.28 to 33.5µM against most of the cell lines in the panel. The dimeric analogs 4f and 4g were identified as lead compounds with GI50 values in the nanomolar range (GI50=280-980nM) against several cell lines in the panel; i.e. leukemia cell lines CCRF-CEM, HL-60(TB), K-562, MOLT-4, RPMI-8226 and SR; and solid tumor cell lines NCI-H522 (non-small cell lung cancer), SW-620 and HCT-116 (colon cancer), LOX IMVI (melanoma), RXF 393 (renal cancer), and MCF7, BT-549 and MDA-MB-468 (breast cancer). Succinamide analogs 3a, 3c-3l and 4b-4h were also evaluated for their apoptotic activity against M9-ENL1 acute myelogenous leukemia cells; compounds 3h-3j and 4g were equipotent with parthenolide, exhibiting LC50 values in the range 4.1-8.1µM. Molecular docking studies indicate that these molecules interact covalently with the highly conserved Cys-46 residue of the N-terminal lobe (1-109) of human IKKß to inhibit the NFκB transcription factor complex, resulting in down-regulation of anti-apoptotic genes under NFκB control.


Assuntos
Amidas/química , Sesquiterpenos/química , Succinatos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Proteínas I-kappa B/antagonistas & inibidores , Proteínas I-kappa B/metabolismo , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Sesquiterpenos/síntese química , Sesquiterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA