Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 68(5): 494-510, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29341854

RESUMO

The replacement of the Desert Research Institute (DRI) model 2001 with model 2015 thermal/optical analyzers (TOAs) results in continuity of the long-term organic carbon (OC) and elemental carbon (EC) database, and it adds optical information with no additional carbon analysis effort. The value of multiwavelength light attenuation is that light absorption due to black carbon (BC) can be separated from that of brown carbon (BrC), with subsequent attribution to known sources such as biomass burning and secondary organic aerosols. There is evidence of filter loading effects for the 25% of all samples with the highest EC concentrations based on the ratio of light attenuation to EC. Loading corrections similar to those used for the seven-wavelength aethalometer need to be investigated. On average, nonurban Interagency Monitoring of PROtected Visual Environments (IMPROVE) samples show higher BrC fractions of short-wavelength absorption than urban Chemical Speciation Network (CSN) samples, owing to greater influence from biomass burning and aged aerosols, as well as to higher primary BC contributions from engine exhaust at urban sites. Sequential samples taken during an Everglades National Park wildfire demonstrate the evolution from flaming to smoldering combustion, with the BrC fraction increasing as smoldering begins to dominate the fire event. IMPLICATIONS: The inclusion of seven wavelengths in thermal/optical carbon analysis of speciated PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 µm) samples allows contributions from biomass burning and secondary organic aerosols to be estimated. This separation is useful for evaluating control strategy effectiveness, identifying exceptional events, and determining natural visibility conditions.


Assuntos
Carbono/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Fuligem/análise , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Biomassa , Carbono/química , Tamanho da Partícula , Material Particulado/química , Fuligem/química , Emissões de Veículos/análise , Incêndios Florestais
2.
J Air Waste Manag Assoc ; 68(5): 390-402, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28837409

RESUMO

A study was conducted on the Brigham Young University campus during January and February 2015 to identify winter-time sources of fine particulate material in Utah Valley, Utah. Fine particulate mass and components and related gas-phase species were all measured on an hourly averaged basis. Light scattering was also measured during the study. Included in the sampling was the first-time source apportionment application of a new monitoring instrument for the measurement of fine particulate organic marker compounds on an hourly averaged basis. Organic marker compounds measured included levoglucosan, dehydroabietic acid, stearic acid, pyrene, and anthracene. A total of 248 hourly averaged data sets were available for a positive matrix factorization (PMF) analysis of sources of both primary and secondary fine particulate material. A total of nine factors were identified. The presence of wood smoke emissions was associated with levoglucosan, dehydroabietic acid, and pyrene markers. Fine particulate secondary nitrate, secondary organic material, and wood smoke accounted for 90% of the fine particulate material. Fine particle light scattering was dominated by sources associated with wood smoke and secondary ammonium nitrate with associated modeled fine particulate water. IMPLICATIONS: The identification of sources and secondary formation pathways leading to observed levels of PM2.5 (particulate matter with an aerodynmaic diameter <2.5 µm) is important in making regulatory decisions on pollution control. The use of organic marker compounds in this assessment has proven useful; however, data obtained on a daily, or longer, sampling schedule limit the value of the information because diurnal changes associated with emissions and secondary aerosol formation cannot be identified. A new instrument, the gas chromtography-mass spectrometry (GC-MS) organic aerosol monitor, allows for the determination on these compounds on an hourly averaged basis. The demonstrated potential value of hourly averaged data in a source apportionment analysis indicates that significant improvement in the data used for making regulatory decisions is possible.


Assuntos
Aerossóis/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Aerossóis/química , Poluentes Atmosféricos/análise , Cromatografia Gasosa-Espectrometria de Massas , Tamanho da Partícula , Material Particulado/química , Estações do Ano , Fumaça/análise , Utah , Madeira/química
3.
J Chromatogr A ; 1417: 73-8, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26410183

RESUMO

Portable and compact instruments for separating and detecting organic compounds are needed in the field for environmental studies. This is especially the case for pollution studies as in-field detection of organic compounds helps identify sources of pollution. Here we describe the development of a compact GC and simple pre-concentrator coupled to a MS detector. This simple system can easily be incorporated into portable instrumentation. Combining the pre-concentrator and compact column has the advantage of decoupling separation from manual injection and enhances separation of environmentally relevant polar organic compounds, such as levoglucosan. A detection limit of 2.2 ng was obtained for levoglucosan. This simple design has the potential to expand the use of gas chromatography as a routine in-field separation technique.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Cromatografia Gasosa/métodos , Glucose/análogos & derivados , Hidrocarbonetos/isolamento & purificação , Cromatografia Gasosa/instrumentação , Glucose/isolamento & purificação , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA