Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6688): eadk6176, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484056

RESUMO

Obeldesivir (ODV, GS-5245) is an orally administered prodrug of the parent nucleoside of remdesivir (RDV) and is presently in phase 3 trials for COVID-19 treatment. In this work, we show that ODV and its circulating parent nucleoside metabolite, GS-441524, have similar in vitro antiviral activity against filoviruses, including Marburg virus, Ebola virus, and Sudan virus (SUDV). We also report that once-daily oral ODV treatment of cynomolgus monkeys for 10 days beginning 24 hours after SUDV exposure confers 100% protection against lethal infection. Transcriptomics data show that ODV treatment delayed the onset of inflammation and correlated with antigen presentation and lymphocyte activation. Our results offer promise for the further development of ODV to control outbreaks of filovirus disease more rapidly.


Assuntos
Alanina , Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Nucleosídeos , Pró-Fármacos , Animais , Administração Oral , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Macaca fascicularis , Nucleosídeos/administração & dosagem , Nucleosídeos/farmacologia , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/farmacologia , Alanina/administração & dosagem , Alanina/análogos & derivados , Alanina/farmacologia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacologia , Antivirais/administração & dosagem , Antivirais/farmacologia
2.
Viruses ; 15(5)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37243163

RESUMO

The henipaviruses, Nipah virus (NiV), and Hendra virus (HeV) can cause fatal diseases in humans and animals, whereas Cedar virus is a nonpathogenic henipavirus. Here, using a recombinant Cedar virus (rCedV) reverse genetics platform, the fusion (F) and attachment (G) glycoprotein genes of rCedV were replaced with those of NiV-Bangladesh (NiV-B) or HeV, generating replication-competent chimeric viruses (rCedV-NiV-B and rCedV-HeV), both with and without green fluorescent protein (GFP) or luciferase protein genes. The rCedV chimeras induced a Type I interferon response and utilized only ephrin-B2 and ephrin-B3 as entry receptors compared to rCedV. The neutralizing potencies of well-characterized cross-reactive NiV/HeV F and G specific monoclonal antibodies against rCedV-NiV-B-GFP and rCedV-HeV-GFP highly correlated with measurements obtained using authentic NiV-B and HeV when tested in parallel by plaque reduction neutralization tests (PRNT). A rapid, high-throughput, and quantitative fluorescence reduction neutralization test (FRNT) using the GFP-encoding chimeras was established, and monoclonal antibody neutralization data derived by FRNT highly correlated with data derived by PRNT. The FRNT assay could also measure serum neutralization titers from henipavirus G glycoprotein immunized animals. These rCedV chimeras are an authentic henipavirus-based surrogate neutralization assay that is rapid, cost-effective, and can be utilized outside high containment.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Humanos , Animais , Proteínas do Envelope Viral/genética , Vírus Hendra/genética , Vírus Nipah/genética , Glicoproteínas/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
3.
Sci Transl Med ; 14(675): eabq6364, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36516269

RESUMO

Marburg virus (MARV) causes a severe hemorrhagic fever disease in primates with mortality rates in humans of up to 90%. MARV has been identified as a category A bioterrorism agent by the Centers for Disease Control and Prevention (CDC) and priority pathogen A by the National Institute of Allergy and Infectious Diseases (NIAID), needing urgent research and development of countermeasures because of the high public health risk it poses. The recent cases of MARV in West Africa underscore the substantial outbreak potential of this virus. The potential for cross-border spread, as had occurred during the 2014-2016 Ebola virus outbreak, illustrates the critical need for MARV vaccines. To support regulatory approval of the chimpanzee adenovirus 3 (ChAd3)-MARV vaccine that has completed phase 1 trials, we showed that the nonreplicating ChAd3 vector, which has a demonstrated safety profile in humans, protected against a uniformly lethal challenge with MARV/Ang. Protective immunity was achieved within 7 days of vaccination and was maintained through 1 year after vaccination. Antigen-specific antibodies were an immune correlate of protection in the acute challenge model, and their concentration was predictive of protection. These results demonstrate that a single-shot ChAd3-MARV vaccine generated a protective immune response that was both rapid and durable with an immune correlate of protection that will support advanced clinical development.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , Pan troglodytes , Primatas , Adenoviridae , Doença do Vírus de Marburg/prevenção & controle
4.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35413016

RESUMO

A major challenge in managing acute viral infections is ameliorating disease when treatment is delayed. Previously, we reported the success of a 2-pronged mAb and antiviral remdesivir therapeutic approach to treat advanced illness in rhesus monkeys infected with Marburg virus (MARV). Here, we explored the benefit of a similar combination therapy for Sudan ebolavirus (Sudan virus; SUDV) infection. Importantly, no licensed anti-SUDV therapeutics currently exist, and infection of rhesus macaques with SUDV results in a rapid disease course similar to MARV with a mean time to death of 8.3 days. When initiation of therapy with either remdesivir or a pan-ebolavirus mAb cocktail (MBP431) was delayed until 6 days after inoculation, only 20% of macaques survived. In contrast, when remdesivir and MBP431 treatment were combined beginning 6 days after inoculation, significant protection (80%) was achieved. Our results suggest that combination therapy may be a viable treatment for patients with advanced filovirus disease that warrants further clinical testing in future outbreaks.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Marburgvirus , Viroses , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Macaca mulatta
5.
Vaccines (Basel) ; 9(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34835278

RESUMO

Stable, effective, easy-to-manufacture vaccines are critical to stopping the COVID-19 pandemic resulting from the coronavirus SARS-CoV-2. We constructed a vaccine candidate CoV-RBD121-NP, which is comprised of the SARS-CoV-2 receptor-binding domain (RBD) of the spike glycoprotein (S) fused to a human IgG1 Fc domain (CoV-RBD121) and conjugated to a modified tobacco mosaic virus (TMV) nanoparticle. In vitro, CoV-RBD121 bound to the host virus receptor ACE2 and to the monoclonal antibody CR3022, a neutralizing antibody that blocks S binding to ACE2. The CoV-RBD121-NP vaccine candidate retained key SARS-CoV-2 spike protein epitopes, had consistent manufacturing release properties of safety, identity, and strength, and displayed stable potency when stored for 12 months at 2-8 °C or 22-28 °C. Immunogenicity studies revealed strong antibody responses in C57BL/6 mice with non-adjuvanted or adjuvanted (7909 CpG) formulations. The non-adjuvanted vaccine induced a balanced Th1/Th2 response and antibodies that recognized both the S1 domain and full S protein from SARS2-CoV-2, whereas the adjuvanted vaccine induced a Th1-biased response. Both adjuvanted and non-adjuvanted vaccines induced virus neutralizing titers as measured by three different assays. Collectively, these data showed the production of a stable candidate vaccine for COVID-19 through the association of the SARS-CoV-2 RBD with the TMV-like nanoparticle.

6.
Nat Struct Mol Biol ; 28(5): 426-434, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33927387

RESUMO

Hendra virus (HeV) and Nipah virus (NiV) are henipaviruses (HNVs) causing respiratory illness and severe encephalitis in humans, with fatality rates of 50-100%. There are no licensed therapeutics or vaccines to protect humans. HeV and NiV use a receptor-binding glycoprotein (G) and a fusion glycoprotein (F) to enter host cells. HNV F and G are the main targets of the humoral immune response, and the presence of neutralizing antibodies is a correlate of protection against NiV and HeV in experimentally infected animals. We describe here two cross-reactive F-specific antibodies, 1F5 and 12B2, that neutralize NiV and HeV through inhibition of membrane fusion. Cryo-electron microscopy structures reveal that 1F5 and 12B2 recognize distinct prefusion-specific, conserved quaternary epitopes and lock F in its prefusion conformation. We provide proof-of-concept for using antibody cocktails for neutralizing NiV and HeV and define a roadmap for developing effective countermeasures against these highly pathogenic viruses.


Assuntos
Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Vírus Hendra/imunologia , Vírus Nipah/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Monoclonais Humanizados/imunologia , Células CHO , Cricetulus , Reações Cruzadas , Células HEK293 , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/prevenção & controle , Humanos , Camundongos , Internalização do Vírus
7.
Nat Commun ; 12(1): 1891, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767178

RESUMO

Monoclonal antibodies (mAbs) and remdesivir, a small-molecule antiviral, are promising monotherapies for many viruses, including members of the genera Marburgvirus and Ebolavirus (family Filoviridae), and more recently, SARS-CoV-2. One of the major challenges of acute viral infections is the treatment of advanced disease. Thus, extending the window of therapeutic intervention is critical. Here, we explore the benefit of combination therapy with a mAb and remdesivir in a non-human primate model of Marburg virus (MARV) disease. While rhesus monkeys are protected against lethal infection when treatment with either a human mAb (MR186-YTE; 100%), or remdesivir (80%), is initiated 5 days post-inoculation (dpi) with MARV, no animals survive when either treatment is initiated alone beginning 6 dpi. However, by combining MR186-YTE with remdesivir beginning 6 dpi, significant protection (80%) is achieved, thereby extending the therapeutic window. These results suggest value in exploring combination therapy in patients presenting with advanced filovirus disease.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Doença do Vírus de Marburg/tratamento farmacológico , Marburgvirus/efeitos dos fármacos , Monofosfato de Adenosina/uso terapêutico , Alanina/uso terapêutico , Animais , Modelos Animais de Doenças , Quimioterapia Combinada , Macaca mulatta , Doença do Vírus de Marburg/prevenção & controle , Carga Viral/efeitos dos fármacos
8.
Virol J ; 17(1): 125, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811514

RESUMO

We recently reported the development of the first African green monkey (AGM) model for COVID-19 based on a combined liquid intranasal (i.n.) and intratracheal (i.t.) exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we followed up on this work by assessing an i.n. particle only route of exposure using the LMA mucosal atomization device (MAD). Six AGMs were infected with SARS-CoV-2; three animals were euthanized near the peak stage of virus replication (day 5) and three animals were euthanized during the early convalescence period (day 34). All six AGMs supported robust SARS-CoV-2 replication and developed respiratory disease. Evidence of coagulation dysfunction as noted by a transient increases in aPTT and circulating levels of fibrinogen was observed in all AGMs. The level of SARS-CoV-2 replication and lung pathology was not quite as pronounced as previously reported with AGMs exposed by the combined i.n. and i.t. routes; however, SARS-CoV-2 RNA was detected in nasal swabs of some animals as late as day 15 and rectal swabs as late as day 28 after virus challenge. Of particular importance to this study, all three AGMs that were followed until the early convalescence stage of COVID-19 showed substantial lung pathology at necropsy as evidenced by multifocal chronic interstitial pneumonia and increased collagen deposition in alveolar walls despite the absence of detectable SARS-CoV-2 in any of the lungs of these animals. These findings are consistent with human COVID-19 further demonstrating that the AGM faithfully reproduces the human condition.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Animais , Betacoronavirus/imunologia , COVID-19 , Chlorocebus aethiops , Convalescença , Infecções por Coronavirus/sangue , Modelos Animais de Doenças , Feminino , Lesão Pulmonar/patologia , Lesão Pulmonar/virologia , Mucosa Nasal/virologia , Pandemias , Pneumonia Viral/sangue , SARS-CoV-2 , Soroconversão , Carga Viral , Eliminação de Partículas Virais
9.
Sci Rep ; 10(1): 3071, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080323

RESUMO

Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (MARV); however, the mechanisms that drive this protection are undefined. Previously, we reported 60-75% survival of rhesus macaques treated with rVSV vectors expressing MARV glycoprotein (GP) 20-30 minutes after a low dose exposure to the most pathogenic variant of MARV, Angola. Survival in this model was linked to production of GP-specific antibodies and lower viral load. To confirm these results and potentially identify novel correlates of postexposure protection, we performed a similar experiment, but analyzed plasma cytokine levels, frequencies of immune cell subsets, and the transcriptional response to infection in peripheral blood. In surviving macaques (80-89%), we observed induction of genes mapping to antiviral and interferon-related pathways early after treatment and a higher percentage of T helper 1 (Th1) and NK cells. In contrast, the response of non-surviving macaques was characterized by hypercytokinemia; a T helper 2 signature; recruitment of low HLA-DR expressing monocytes and regulatory T-cells; and transcription of immune checkpoint (e.g., PD-1, LAG3) genes. These results suggest dysregulated immunoregulation is associated with poor prognosis, whereas early innate signaling and Th1-skewed immunity are important for survival.


Assuntos
Doença do Vírus de Marburg/imunologia , Doença do Vírus de Marburg/virologia , Marburgvirus/imunologia , Profilaxia Pós-Exposição , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Citocinas/sangue , Citotoxicidade Imunológica , Relação Dose-Resposta Imunológica , Regulação para Baixo/genética , Feminino , Inflamação/sangue , Inflamação/imunologia , Interferons/genética , Interferons/metabolismo , Células Matadoras Naturais/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Doença do Vírus de Marburg/sangue , Doença do Vírus de Marburg/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recombinação Genética/genética , Linfócitos T Auxiliares-Indutores/imunologia , Células Th1/imunologia , Células Th2/imunologia , Transcriptoma/genética , Regulação para Cima/genética , Vesiculovirus/genética , Carga Viral/imunologia
10.
J Infect Dis ; 221(Suppl 4): S471-S479, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31686101

RESUMO

BACKGROUND: Nipah virus (NiV) and Hendra virus (HeV) are zoonotic paramyxoviruses that cause severe disease in both animals and humans. There are no approved vaccines or treatments for use in humans; however, therapeutic treatment of both NiV and HeV infection in ferrets and non-human primates with a cross-reactive, neutralizing human monoclonal antibody (mAb), m102.4, targeting the G glycoprotein has been demonstrated. In a previous study, we isolated, characterized, and humanized a cross-reactive, neutralizing anti-F mAb (h5B3.1). The mAb h5B3.1 blocks the required F conformational change needed to facilitate membrane fusion and virus infection, and the epitope recognized by h5B3.1 has been structurally defined; however, the efficacy of h5B3.1 in vivo is unknown. METHODS: The post-infection antiviral activity of h5B3.1 was evaluated in vivo by administration in ferrets after NiV and HeV virus challenge. RESULTS: All subjects that received h5B3.1 from 1 to several days after infection with a high-dose, oral-nasal virus challenge were protected from disease, whereas all controls died. CONCLUSIONS: This is the first successful post-exposure antibody therapy for NiV and HeV using a humanized cross-reactive mAb targeting the F glycoprotein, and the findings suggest that a combination therapy targeting both F and G should be evaluated as a therapy for NiV/HeV infection.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Vírus Hendra , Infecções por Henipavirus/terapia , Vírus Nipah , Proteínas Virais de Fusão/imunologia , Animais , Reações Cruzadas , Furões , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/virologia , Humanos
11.
Sci Rep ; 9(1): 16710, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723221

RESUMO

Nipah virus (NiV) is a pathogenic paramyxovirus and zoononis with very high human fatality rates. Previous protein over-expression studies have shown that various mutations to the common N-terminal STAT1-binding motif of the NiV P, V, and W proteins affected the STAT1-binding ability of these proteins thus interfering with he JAK/STAT pathway and reducing their ability to inhibit type-I IFN signaling, but due to differing techniques it was unclear which amino acids were most important in this interaction or what impact this had on pathogenesis in vivo. We compared all previously described mutations in parallel and found the amino acid mutation Y116E demonstrated the greatest reduction in binding to STAT1 and the greatest reduction in interferon antagonism. A similar reduction in binding and activity was seen for a deletion of twenty amino acids constituting the described STAT1-binding domain. To investigate the contribution of this STAT1-binding motif in NiV-mediated disease, we produced rNiVs with complete deletion of the STAT1-binding motif or the Y116E mutation for ferret challenge studies (rNiVM-STAT1blind). Despite the reduced IFN inhibitory function, ferrets challenged with these rNiVM-STAT1blind mutants had a lethal, albeit altered, NiV-mediated disease course. These data, together with our previously published data, suggest that the major role of NiV P, V, and W in NiV-mediated disease in the ferret model are likely to be in the inhibition of viral recognition/innate immune signaling induction with a minor role for inhibition of IFN signaling.


Assuntos
Infecções por Henipavirus/patologia , Infecções por Henipavirus/virologia , Vírus Nipah/fisiologia , Fosfoproteínas/metabolismo , Fator de Transcrição STAT1/antagonistas & inibidores , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Modelos Animais de Doenças , Progressão da Doença , Feminino , Furões , Infecções por Henipavirus/metabolismo , Fosfoproteínas/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT1/metabolismo , Proteínas Virais/genética , Proteínas Estruturais Virais/genética
12.
Cell ; 178(4): 1004-1015.e14, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398326

RESUMO

Lassa virus (LASV) causes hemorrhagic fever and is endemic in West Africa. Protective antibody responses primarily target the LASV surface glycoprotein (GPC), and GPC-B competition group antibodies often show potent neutralizing activity in humans. However, which features confer potent and broadly neutralizing antibody responses is unclear. Here, we compared three crystal structures of LASV GPC complexed with GPC-B antibodies of varying neutralization potency. Each GPC-B antibody recognized an overlapping epitope involved in binding of two adjacent GPC monomers and preserved the prefusion trimeric conformation. Differences among GPC-antibody interactions highlighted specific residues that enhance neutralization. Using structure-guided amino acid substitutions, we increased the neutralization potency and breadth of these antibodies to include all major LASV lineages. The ability to define antibody residues that allow potent and broad neutralizing activity, together with findings from analyses of inferred germline precursors, is critical to develop potent therapeutics and for vaccine design and assessment.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Células Germinativas/imunologia , Febre Lassa/imunologia , Vírus Lassa/imunologia , Glicoproteínas de Membrana/química , Proteínas do Envelope Viral/química , Animais , Antígenos Virais/imunologia , Chlorocebus aethiops , Drosophila/citologia , Epitopos/química , Epitopos/imunologia , Células HEK293 , Humanos , Febre Lassa/virologia , Glicoproteínas de Membrana/imunologia , Estrutura Secundária de Proteína , Células Vero , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia
13.
Nat Commun ; 7: 11544, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161536

RESUMO

Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus Lassa/imunologia , Especificidade de Anticorpos , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Arenavirus/imunologia , Reações Cruzadas , Mapeamento de Epitopos , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Humanos , Febre Lassa/imunologia , Febre Lassa/prevenção & controle , Vírus Lassa/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Deleção de Sequência , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
14.
Nat Commun ; 6: 7483, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26105519

RESUMO

The viral determinants that contribute to Nipah virus (NiV)-mediated disease are poorly understood compared with other paramyxoviruses. Here we use recombinant NiVs (rNiVs) to examine the contributions of the NiV V and W proteins to NiV pathogenesis in a ferret model. We show that a V-deficient rNiV is susceptible to the innate immune response in vitro and behaves as a replicating non-lethal virus in vivo. Remarkably, rNiV lacking W expression results in a delayed and altered disease course with decreased respiratory disease and increased terminal neurological disease associated with altered in vitro inflammatory cytokine production. This study confirms the V protein as the major determinant of pathogenesis, also being the first in vivo study to show that the W protein modulates the inflammatory host immune response in a manner that determines the disease course.


Assuntos
Quimiocinas/imunologia , Infecções por Henipavirus/imunologia , Imunidade Inata/imunologia , Vírus Nipah/imunologia , Fosfoproteínas/imunologia , Proteínas Virais/imunologia , Proteínas Estruturais Virais/imunologia , Animais , Western Blotting , Linhagem Celular , Cricetinae , Citocinas/imunologia , Progressão da Doença , Células Endoteliais/imunologia , Células Endoteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Furões , Infecções por Henipavirus/virologia , Humanos , Técnicas In Vitro , Carga Viral
15.
J Infect Dis ; 212 Suppl 2: S305-15, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26038397

RESUMO

BACKGROUND: Rodent models that accurately reflect human filovirus infection are needed as early screens for medical countermeasures. Prior work in rodents with the Zaire species of Ebola virus (ZEBOV) primarily used inbred mice and guinea pigs to model disease. However, these inbred species do not show some of the important features of primate ZEBOV infection, most notably, coagulation abnormalities. METHODS: Thirty-six outbred guinea pigs were infected with guinea pig-adapted ZEBOV and examined sequentially over an 8-day period to investigate the pathologic events that lead to death. RESULTS: Features of disease in ZEBOV-infected outbred guinea pigs were largely consistent with disease in humans and nonhuman primates and included early infection of macrophages and dendritiform cells, apoptosis of bystander lymphocytes, and increases in levels of proinflammatory cytokines. Most importantly, dysregulation of circulating levels of fibrinogen, protein C activity, and antifibrinolytic proteins and deposition of fibrin in tissues demonstrated both biochemical and microscopic evidence of disseminated intravascular coagulation. CONCLUSIONS: These findings suggest that the outbred guinea pig model recapitulates ZEBOV infection of primates better than inbred rodent models, is useful for dissecting key events in the pathogenesis of ZEBOV, and is useful for evaluating candidate interventions prior to assessment in primates.


Assuntos
Cobaias/virologia , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/virologia , Animais , Coagulação Sanguínea/fisiologia , Linhagem Celular , Chlorocebus aethiops , Citocinas/metabolismo , República Democrática do Congo , Modelos Animais de Doenças , Progressão da Doença , Ebolavirus/patogenicidade , Feminino , Fibrina/metabolismo , Fibrinogênio/metabolismo , Cobaias/metabolismo , Doença pelo Vírus Ebola/metabolismo , Linfócitos/metabolismo , Linfócitos/patologia , Linfócitos/virologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Primatas/metabolismo , Primatas/virologia , Proteína C/metabolismo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA