Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 118(11): 2755-2768, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32396850

RESUMO

Elastin-derived peptides are released from the extracellular matrix remodeling by numerous proteases and seem to regulate many biological processes, notably cancer progression. The canonical elastin peptide is VGVAPG, which harbors the XGXXPG consensus pattern, allowing interaction with the elastin receptor complex located at the surface of cells. Besides these elastokines, another class of peptides has been identified. This group of bioactive elastin peptides presents the XGXPGXGXG consensus sequence, but the reason for their bioactivity remains unexplained. To better understand their nature and structure-function relationships, herein we searched the current databases for this nonapeptide motif and observed that the XGXPGXGXG elastin peptides define a specific group of tandemly repeated patterns. Further, we focused on four tandemly repeated human elastin nonapeptides, i.e., AGIPGLGVG, VGVPGLGVG, AGVPGLGVG, and AGVPGFGAG. These peptides were analyzed by means of optical spectroscopies and molecular dynamics. Ultraviolet-circular dichroism and Raman spectra are consistent with a mixture of ß-turn, ß-strand, and random-chain secondary elements in aqueous media. Quantitative analysis of their conformations suggested that turns corresponded to half of the total population of structural elements, whereas the remaining half were equally distributed between ß-strand and unordered chains. These distributions were confirmed by molecular dynamics simulations. Altogether, our data suggest that these highly dynamic peptides harbor a type II ß-turn located in their central part. We hypothesize that this structural element could explain their specific bioactivity.


Assuntos
Elastina , Peptídeos , Dicroísmo Circular , Matriz Extracelular , Humanos
2.
EMBO Rep ; 20(8): e47182, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286648

RESUMO

In eukaryotes, membrane contact sites (MCS) allow direct communication between organelles. Plants have evolved a unique type of MCS, inside intercellular pores, the plasmodesmata, where endoplasmic reticulum (ER)-plasma membrane (PM) contacts coincide with regulation of cell-to-cell signalling. The molecular mechanism and function of membrane tethering within plasmodesmata remain unknown. Here, we show that the multiple C2 domains and transmembrane region protein (MCTP) family, key regulators of cell-to-cell signalling in plants, act as ER-PM tethers specifically at plasmodesmata. We report that MCTPs are plasmodesmata proteins that insert into the ER via their transmembrane region while their C2 domains dock to the PM through interaction with anionic phospholipids. A Atmctp3/Atmctp4 loss of function mutant induces plant developmental defects, impaired plasmodesmata function and composition, while MCTP4 expression in a yeast Δtether mutant partially restores ER-PM tethering. Our data suggest that MCTPs are unique membrane tethers controlling both ER-PM contacts and cell-to-cell signalling.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Proteínas de Membrana/genética , Plasmodesmos/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Glicosiltransferases/deficiência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/deficiência , Fosfolipídeos/metabolismo , Células Vegetais , Plantas Geneticamente Modificadas , Plasmodesmos/metabolismo , Plasmodesmos/ultraestrutura , Domínios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo , Proteína Vermelha Fluorescente
3.
Sci Rep ; 9(1): 9109, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235855

RESUMO

Dynamic and reciprocal interactions generated by the communication between tumor cells and their matrix microenvironment, play a major role in the progression of a tumor. Indeed, the adhesion of specific sites to matrix components, associated with the repeated and coordinated formation of membrane protrusions, allow tumor cells to move along a determined pathway. Our study analyzed the mechanism of action of low-diluted Phenacetinum on murine cutaneous melanoma process in a fibronectin matrix environment. We demonstrated a reduction of dispersed cell migration, early and for as long as 24 h, by altering the formation of cell protrusions. Moreover, low-diluted Phenacetinum decreased cell stiffness highly on peripheral areas, due to a disruption of actin filaments located just under the plasma membrane. Finally, it modified the structure of the plasma membrane by accumulating large ordered lipid domains and disrupted B16 cell migration by a likely shift in the balance between ordered and disordered lipid phases. Whereas the correlation between the excess of lipid raft and cytoskeleton disrupting is not as yet established, it is clear that low-diluted Phenacetinum acts on the actin cytoskeleton organization, as confirmed by a decrease of cell stiffness affecting ultimately the establishment of an effective migration process.


Assuntos
Movimento Celular/efeitos dos fármacos , Melanoma/patologia , Fenacetina/farmacologia , Neoplasias Cutâneas/patologia , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Polaridade Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Melanoma Maligno Cutâneo
4.
J Exp Bot ; 70(1): 329-341, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30418580

RESUMO

The P1B ATPase heavy metal ATPase 4 (HMA4) is responsible for zinc and cadmium translocation from roots to shoots in Arabidopsis thaliana. It couples ATP hydrolysis to cytosolic domain movements, enabling metal transport across the membrane. The detailed mechanism of metal permeation by HMA4 through the membrane remains elusive. Here, homology modeling of the HMA4 transmembrane region was conducted based on the crystal structure of a ZntA bacterial homolog. The analysis highlighted amino acids forming a metal permeation pathway, whose importance was subsequently investigated functionally through mutagenesis and complementation experiments in plants. Although the zinc pathway displayed overall conservation among the two proteins, significant differences were observed, especially in the entrance area with altered electronegativity and the presence of a ionic interaction/hydrogen bond network. The analysis also newly identified amino acids whose mutation results in total or partial loss of the protein function. In addition, comparison of zinc and cadmium accumulation in shoots of A. thaliana complemented lines revealed a number of HMA4 mutants exhibiting different abilities in zinc and cadmium translocation. These observations could be instrumental to design low cadmium-accumulating crops, hence decreasing human cadmium exposure.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Zinco/metabolismo , Adenosina Trifosfatases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Modelos Genéticos , Homologia Estrutural de Proteína
5.
Int J Mol Sci ; 19(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223492

RESUMO

By manipulating the various physicochemical properties of amino acids, the design of peptides with specific self-assembling properties has been emerging for more than a decade. In this context, short peptides possessing detergent properties (so-called "peptergents") have been developed to self-assemble into well-ordered nanostructures that can stabilize membrane proteins for crystallization. In this study, the peptide with "peptergency" properties, called ADA8 and extensively described by Tao et al., is studied by molecular dynamic simulations for its self-assembling properties in different conditions. In water, it spontaneously forms beta sheets with a ß barrel-like structure. We next simulated the interaction of this peptide with a membrane protein, the bacteriorhodopsin, in the presence or absence of a micelle of dodecylphosphocholine. According to the literature, the peptergent ADA8 is thought to generate a belt of ß structures around the hydrophobic helical domain that could help stabilize purified membrane proteins. Molecular dynamic simulations are here used to image this mechanism and provide further molecular details for the replacement of detergent molecules around the protein. In addition, we generalized this behavior by designing an amphipathic peptide with beta propensity, which was called ABZ12. Both peptides are able to surround the membrane protein and displace surfactant molecules. To our best knowledge, this is the first molecular mechanism proposed for "peptergency".


Assuntos
Detergentes/química , Simulação de Dinâmica Molecular , Peptídeos/química , Aminoácidos/química , Detergentes/farmacologia , Proteínas de Membrana/química , Peptídeos/farmacologia , Conformação Proteica , Relação Estrutura-Atividade , Água/química
6.
Elife ; 62017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28758890

RESUMO

Plasma Membrane is the primary structure for adjusting to ever changing conditions. PM sub-compartmentalization in domains is thought to orchestrate signaling. Yet, mechanisms governing membrane organization are mostly uncharacterized. The plant-specific REMORINs are proteins regulating hormonal crosstalk and host invasion. REMs are the best-characterized nanodomain markers via an uncharacterized moiety called REMORIN C-terminal Anchor. By coupling biophysical methods, super-resolution microscopy and physiology, we decipher an original mechanism regulating the dynamic and organization of nanodomains. We showed that targeting of REMORIN is independent of the COP-II-dependent secretory pathway and mediated by PI4P and sterol. REM-CA is an unconventional lipid-binding motif that confers nanodomain organization. Analyses of REM-CA mutants by single particle tracking demonstrate that mobility and supramolecular organization are critical for immunity. This study provides a unique mechanistic insight into how the tight control of spatial segregation is critical in the definition of PM domain necessary to support biological function.


Assuntos
Membrana Celular/química , Nicotiana/química , Nicotiana/fisiologia , Proteínas de Plantas/análise , Fenômenos Biofísicos , Microscopia
7.
Langmuir ; 33(38): 9979-9987, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28749675

RESUMO

Natural and synthetic amphiphilic molecules including lipopeptides, lipopolysaccharides, and glycolipids are able to induce defense mechanisms in plants. In the present work, the perception of two synthetic C14 rhamnolipids, namely, Alk-RL and Ac-RL, differing only at the level of the lipid tail terminal group have been investigated using biological and biophysical approaches. We showed that Alk-RL induces a stronger early signaling response in tobacco cell suspensions than does Ac-RL. The interactions of both synthetic RLs with simplified biomimetic membranes were further analyzed using experimental and in silico approaches. Our results indicate that the interactions of Alk-RL and Ac-RL with lipids were different in terms of insertion and molecular responses and were dependent on the lipid composition of model membranes. A more favorable insertion of Alk-RL than Ac-RL into lipid membranes is observed. Alk-RL forms more stable molecular assemblies than Ac-RL with phospholipids and sterols. At the molecular level, the presence of sterols tends to increase the RLs' interaction with lipid bilayers, with a fluidizing effect on the alkyl chains. Taken together, our findings suggest that the perception of these synthetic RLs at the membrane level could be related to a lipid-driven process depending on the organization of the membrane and the orientation of the RLs within the membrane and is correlated with the induction of early signaling responses in tobacco cells.


Assuntos
Glicolipídeos/química , Biomimética , Membrana Celular , Bicamadas Lipídicas , Lipídeos de Membrana
8.
Nature ; 501(7467): 430-4, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-23965626

RESUMO

The African parasite Trypanosoma brucei gambiense accounts for 97% of human sleeping sickness cases. T. b. gambiense resists the specific human innate immunity acting against several other tsetse-fly-transmitted trypanosome species such as T. b. brucei, the causative agent of nagana disease in cattle. Human immunity to some African trypanosomes is due to two serum complexes designated trypanolytic factors (TLF-1 and -2), which both contain haptoglobin-related protein (HPR) and apolipoprotein LI (APOL1). Whereas HPR association with haemoglobin (Hb) allows TLF-1 binding and uptake via the trypanosome receptor TbHpHbR (ref. 5), TLF-2 enters trypanosomes independently of TbHpHbR (refs 4, 5). APOL1 kills trypanosomes after insertion into endosomal/lysosomal membranes. Here we report that T. b. gambiense resists TLFs via a hydrophobic ß-sheet of the T. b. gambiense-specific glycoprotein (TgsGP), which prevents APOL1 toxicity and induces stiffening of membranes upon interaction with lipids. Two additional features contribute to resistance to TLFs: reduction of sensitivity to APOL1 requiring cysteine protease activity, and TbHpHbR inactivation due to a L210S substitution. According to such a multifactorial defence mechanism, transgenic expression of T. b. brucei TbHpHbR in T. b. gambiense did not cause parasite lysis in normal human serum. However, these transgenic parasites were killed in hypohaptoglobinaemic serum, after high TLF-1 uptake in the absence of haptoglobin (Hp) that competes for Hb and receptor binding. TbHpHbR inactivation preventing high APOL1 loading in hypohaptoglobinaemic serum may have evolved because of the overlapping endemic area of T. b. gambiense infection and malaria, the main cause of haemolysis-induced hypohaptoglobinaemia in western and central Africa.


Assuntos
Apolipoproteínas/sangue , Apolipoproteínas/metabolismo , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo , Trypanosoma brucei gambiense/fisiologia , África , Animais , Animais Geneticamente Modificados , Apolipoproteína L1 , Apolipoproteínas/antagonistas & inibidores , Apolipoproteínas/toxicidade , Membrana Celular/química , Membrana Celular/metabolismo , Cisteína Proteases/metabolismo , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Hemólise , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metabolismo dos Lipídeos , Lipoproteínas HDL/antagonistas & inibidores , Lipoproteínas HDL/química , Lipoproteínas HDL/toxicidade , Parasitos/patogenicidade , Parasitos/fisiologia , Estrutura Secundária de Proteína , Soro/química , Soro/parasitologia , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/química , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
9.
Biochim Biophys Acta ; 1828(2): 499-509, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23000699

RESUMO

CADY is a cell-penetrating peptide spontaneously making non-covalent complexes with Short interfering RNAs (siRNAs) in water. Neither the structure of CADY nor that of the complexes is resolved. We have calculated and analyzed 3D models of CADY and of the non-covalent CADY-siRNA complexes in order to understand their formation and stabilization. Data from the ab initio calculations and molecular dynamics support that, in agreement with the experimental data, CADY is a polymorphic peptide partly helical. Taking into consideration the polymorphism of CADY, we calculated and compared several complexes with peptide/siRNA ratios of up to 40. Four complexes were run by using molecular dynamics. The initial binding of CADYs is essentially due to the electrostatic interactions of the arginines with siRNA phosphates. Due to a repetitive arginine motif (XLWR(K)) in CADY and to the numerous phosphate moieties in the siRNA, CADYs can adopt multiple positions at the siRNA surface leading to numerous possibilities of complexes. Nevertheless, several complex properties are common: an average of 14±1 CADYs is required to saturate a siRNA as compared to the 12±2 CADYs experimentally described. The 40 CADYs/siRNA that is the optimal ratio for vector stability always corresponds to two layers of CADYs per siRNA. When siRNA is covered by the first layer of CADYs, the peptides still bind despite the electrostatic repulsion. The peptide cage is stabilized by hydrophobic CADY-CADY contacts thanks to CADY polymorphism. The analysis demonstrates that the hydrophobicity, the presence of several positive charges and the disorder of CADY are mandatory to make stable the CADY-siRNA complexes.


Assuntos
Peptídeos Penetradores de Células/química , Peptídeos/química , RNA Interferente Pequeno/metabolismo , Motivos de Aminoácidos , Arginina/química , Vetores Genéticos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Eletricidade Estática , Termodinâmica , Fatores de Tempo
10.
J Phys Chem B ; 116(46): 13713-21, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23094791

RESUMO

Fusion peptides of type I fusion glycoproteins are structural elements of several enveloped viruses which enable the fusion between host and virus membranes. It is generally suggested that these peptides can promote the early fusion steps by inducing membrane curvature and that they adopt a tilted helical conformation in membranes. Although this property has been the subject of several experimental and in silico studies, an extensive sampling of the membrane peptide interaction has not yet been done. In this study, we performed coarse-grained molecular dynamic simulations in which the lipid bilayer self-assembles around the peptide. The simulations indicate that the SIV fusion peptide can adopt two different orientations in a DPPC bilayer, a major population which adopts a tilted interfacial orientation and a minor population which is perpendicular to the bilayer. The simulations also indicate that for the SIV mutant that does not induce fusion in vitro the tilt is abolished.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , Vírus da Imunodeficiência Símia/química , Proteínas Virais de Fusão/química , Bicamadas Lipídicas/química , Modelos Biológicos
11.
Proteins ; 68(4): 936-47, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17554782

RESUMO

Alpha-synuclein is a 140 residue protein associated with Parkinson's disease. Intraneural inclusions called Lewy bodies and Lewy neurites are mainly composed of alpha-synuclein aggregated into amyloid fibrils. Other amyloidogenic proteins, such as the beta amyloid peptide involved in Alzheimer's disease and the prion protein (PrP) associated with Creuztfeldt-Jakob's disease, are known to possess "tilted peptides". These peptides are short protein fragments that adopt an oblique orientation at a hydrophobic/hydrophilic interface, which enables destabilization of the membranes. In this paper, sequence analysis and molecular modelling predict that the 67-78 fragment of alpha-synuclein is a tilted peptide. Its destabilizing properties were tested experimentally. The alpha-synuclein 67-78 peptide is able to induce lipid mixing and leakage of unilamellar liposomes. The neuronal toxicity, studied using human neuroblastoma cells, demonstrated that the alpha-synuclein 67-78 peptide induces neurotoxicity. A mutant designed by molecular modelling to be amphipathic was shown to be significantly less fusogenic and toxic than the wild type. In conclusion, we have identified a tilted peptide in alpha-synuclein, which could be involved in the toxicity induced during amyloidogenesis of alpha-synuclein.


Assuntos
Fragmentos de Peptídeos/toxicidade , alfa-Sinucleína/química , Dicroísmo Circular , Humanos , Corpos de Lewy/patologia , Modelos Moleculares , Neurotoxinas/toxicidade , Doença de Parkinson/patologia , Fosfolipídeos , Conformação Proteica , Estresse Mecânico , alfa-Sinucleína/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA