Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(22): 4047-4061.e6, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37977117

RESUMO

CDK4/6 inhibitors are remarkable anti-cancer drugs that can arrest tumor cells in G1 and induce their senescence while causing only relatively mild toxicities in healthy tissues. How they achieve this mechanistically is unclear. We show here that tumor cells are specifically vulnerable to CDK4/6 inhibition because during the G1 arrest, oncogenic signals drive toxic cell overgrowth. This overgrowth causes permanent cell cycle withdrawal by either preventing progression from G1 or inducing genotoxic damage during the subsequent S-phase and mitosis. Inhibiting or reverting oncogenic signals that converge onto mTOR can rescue this excessive growth, DNA damage, and cell cycle exit in cancer cells. Conversely, inducing oncogenic signals in non-transformed cells can drive these toxic phenotypes and sensitize the cells to CDK4/6 inhibition. Together, this demonstrates that cell cycle arrest and oncogenic cell growth is a synthetic lethal combination that is exploited by CDK4/6 inhibitors to induce tumor-specific toxicity.


Assuntos
Antineoplásicos , Neoplasias , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Proteína Supressora de Tumor p53/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética
2.
Mol Cell ; 83(22): 4062-4077.e5, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37977118

RESUMO

Abnormal increases in cell size are associated with senescence and cell cycle exit. The mechanisms by which overgrowth primes cells to withdraw from the cell cycle remain unknown. We address this question using CDK4/6 inhibitors, which arrest cells in G0/G1 and are licensed to treat advanced HR+/HER2- breast cancer. We demonstrate that CDK4/6-inhibited cells overgrow during G0/G1, causing p38/p53/p21-dependent cell cycle withdrawal. Cell cycle withdrawal is triggered by biphasic p21 induction. The first p21 wave is caused by osmotic stress, leading to p38- and size-dependent accumulation of p21. CDK4/6 inhibitor washout results in some cells entering S-phase. Overgrown cells experience replication stress, resulting in a second p21 wave that promotes cell cycle withdrawal from G2 or the subsequent G1. We propose that the levels of p21 integrate signals from overgrowth-triggered stresses to determine cell fate. This model explains how hypertrophy can drive senescence and why CDK4/6 inhibitors have long-lasting effects in patients.


Assuntos
Proteína Supressora de Tumor p53 , Humanos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclo Celular , Divisão Celular , Proteína Supressora de Tumor p53/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo
3.
EMBO J ; 41(6): e108599, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35037284

RESUMO

CDK4/6 inhibitors arrest the cell cycle in G1-phase. They are approved to treat breast cancer and are also undergoing clinical trials against a range of other tumour types. To facilitate these efforts, it is important to understand why a cytostatic arrest in G1 causes long-lasting effects on tumour growth. Here, we demonstrate that a prolonged G1 arrest following CDK4/6 inhibition downregulates replisome components and impairs origin licencing. Upon release from that arrest, many cells fail to complete DNA replication and exit the cell cycle in a p53-dependent manner. If cells fail to withdraw from the cell cycle following DNA replication problems, they enter mitosis and missegregate chromosomes causing excessive DNA damage, which further limits their proliferative potential. These effects are observed in a range of tumour types, including breast cancer, implying that genotoxic stress is a common outcome of CDK4/6 inhibition. This unanticipated ability of CDK4/6 inhibitors to induce DNA damage now provides a rationale to better predict responsive tumour types and effective combination therapies, as demonstrated by the fact that CDK4/6 inhibition induces sensitivity to chemotherapeutics that also cause replication stress.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Feminino , Fase G1 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA