Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(1): 31, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609875

RESUMO

BACKGROUND AND AIMS: Thiopurine-induced acute pancreatitis (TIP) is one of the most common adverse events among inflammatory bowel disease patients treated with azathioprine (AZA), representing a significant clinical burden. Previous studies focused on immune-mediated processes, however, the exact pathomechanism of TIP is essentially unclear. METHODS: To model TIP in vivo, we triggered cerulein-induced experimental pancreatitis in mice receiving a daily oral dose of 1.5 mg/kg AZA. Also, freshly isolated mouse pancreatic cells were exposed to AZA ex vivo, and acinar cell viability, ductal and acinar Ca2+ signaling, ductal Cl- and HCO3- secretion, as well as cystic fibrosis transmembrane conductance regulator (CFTR) expression were assessed using microscopy techniques. Ras-related C3 botulinum toxin substrate (RAC1) activity was measured with a G-LISA assay. Super-resolution microscopy was used to determine protein colocalization. RESULTS: We demonstrated that AZA treatment increases tissue damage in the early phase of cerulein-induced pancreatitis in vivo. Also, both per os and ex vivo AZA exposure impaired pancreatic fluid and ductal HCO3- and Cl- secretion, but did not affect acinar cells. Furthermore, ex vivo AZA exposure also inhibited RAC1 activity in ductal cells leading to decreased co-localization of CFTR and the anchor protein ezrin, resulting in impaired plasma membrane localization of CFTR. CONCLUSIONS: AZA impaired the ductal HCO3- and Cl- secretion through the inhibition of RAC1 activity leading to diminished ezrin-CFTR interaction and disturbed apical plasma membrane expression of CFTR. We report a novel direct toxic effect of AZA on pancreatic ductal cells and suggest that the restoration of ductal function might help to prevent TIP in the future.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Pancreatite , Animais , Camundongos , Doença Aguda , Bicarbonatos/metabolismo , Membrana Celular/metabolismo , Ceruletídeo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo
2.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946838

RESUMO

In eukaryotic cells, ultimate specificity in activation and action-for example, by means of second messengers-of the myriad of signaling cascades is primordial. In fact, versatile and ubiquitous second messengers, such as calcium (Ca2+) and cyclic adenosine monophosphate (cAMP), regulate multiple-sometimes opposite-cellular functions in a specific spatiotemporal manner. Cells achieve this through segregation of the initiators and modulators to specific plasma membrane (PM) subdomains, such as lipid rafts and caveolae, as well as by dynamic close contacts between the endoplasmic reticulum (ER) membrane and other intracellular organelles, including the PM. Especially, these membrane contact sites (MCSs) are currently receiving a lot of attention as their large influence on cell signaling regulation and cell physiology is increasingly appreciated. Depletion of ER Ca2+ stores activates ER membrane STIM proteins, which activate PM-residing Orai and TRPC Ca2+ channels at ER-PM contact sites. Within the MCS, Ca2+ fluxes relay to cAMP signaling through highly interconnected networks. However, the precise mechanisms of MCS formation and the influence of their dynamic lipid environment on their functional maintenance are not completely understood. The current review aims to provide an overview of our current understanding and to identify open questions of the field.


Assuntos
Sinalização do Cálcio/fisiologia , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Retículo Endoplasmático/metabolismo , Animais , Sítios de Ligação , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Modelos Biológicos , Sistemas do Segundo Mensageiro/fisiologia , Análise Espaço-Temporal , Moléculas de Interação Estromal/metabolismo , Canais de Cátion TRPC/metabolismo
3.
Cells ; 9(4)2020 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-32290618

RESUMO

The heat shock response (HSR) regulates induction of stress/heat shock proteins (HSPs) to preserve proteostasis during cellular stress. Earlier, our group established that the plasma membrane (PM) acts as a sensor and regulator of HSR through changes in its microdomain organization. PM microdomains such as lipid rafts, dynamic nanoscale assemblies enriched in cholesterol and sphingomyelin, and caveolae, cholesterol-rich PM invaginations, constitute clustering platforms for proteins functional in signaling cascades. Here, we aimed to compare the effect of cyclodextrin (MßCD)- and nystatin-induced cholesterol modulations on stress-activated expression of the representative HSPs, HSP70, and HSP25 in mouse B16-F10 melanoma cells. Depletion of cholesterol levels with MßCD impaired the heat-inducibility of both HSP70 and HSP25. Sequestration of cholesterol with nystatin impaired the heat-inducibility of HSP25 but not of HSP70. Imaging fluorescent correlation spectroscopy marked a modulated lateral diffusion constant of fluorescently labelled cholesterol in PM during cholesterol deprived conditions. Lipidomics analysis upon MßCD treatment revealed, next to cholesterol reductions, decreased lysophosphatidylcholine and phosphatidic acid levels. These data not only highlight the involvement of PM integrity in HSR but also suggest that altered dynamics of specific cholesterol pools could represent a mechanism to fine tune HSP expression.


Assuntos
Membrana Celular/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Melanoma/genética , Microdomínios da Membrana/metabolismo , Animais , Melanoma/patologia , Camundongos , Transdução de Sinais
4.
PLoS One ; 9(2): e89136, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586549

RESUMO

Eukaryotic cells exhibit a characteristic response to hyperthermic treatment, involving morphological and cytoskeletal alterations and the induction of heat shock protein synthesis. Small GTPases of the Ras superfamily are known to serve as molecular switches which mediate responses to extracellular stimuli. We addressed here how small GTPase Rac1 integrates signals from heat stress and simultaneously induces various cellular changes in mammalian cells. As evidence that Rac1 is implicated in the heat shock response, we first demonstrated that both mild (41.5°C) and severe (43°C) heat shock induced membrane translocation of Rac1. Following inhibition of the activation or palmitoylation of Rac1, the size of its plasma membrane-bound pool was significantly decreased while the heat shock-induced alterations in the cytoskeleton and cell morphology were prevented. We earlier documented that the size distribution pattern of cholesterol-rich rafts is temperature dependent and hypothesized that this is coupled to the triggering mechanism of stress sensing and signaling. Interestingly, when plasma membrane localization of Rac1 was inhibited, a different and temperature independent average domain size was detected. In addition, inhibition of the activation or palmitoylation of Rac1 resulted in a strongly decreased expression of the genes of major heat shock proteins hsp25 and hsp70 under both mild and severe heat stress conditions.


Assuntos
Citoesqueleto/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico , Melanoma Experimental/patologia , Microdomínios da Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Colesterol/metabolismo , Regulação Neoplásica da Expressão Gênica , Lipoilação , Fluidez de Membrana , Camundongos , Chaperonas Moleculares , Transporte Proteico
5.
Int J Hyperthermia ; 29(5): 491-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23841917

RESUMO

Hyperthermia is a promising treatment modality for cancer in combination both with radio- and chemotherapy. In spite of its great therapeutic potential, the underlying molecular mechanisms still remain to be clarified. Due to lipid imbalances and 'membrane defects' most of the tumour cells possess elevated membrane fluidity. However, further increasing membrane fluidity to sensitise to chemo- or radiotherapy could have some other effects. In fact, hyperfluidisation of cell membrane induced by membrane fluidiser initiates a stress response as the heat shock protein response, which may modulate positively or negatively apoptotic cell death. Overviewing some recent findings based on a technology allowing direct imaging of lipid rafts in live cells and lipidomics, novel aspects of the intimate relationship between the 'membrane stress' of tumour cells and the cellular heat shock response will be highlighted. Our findings lend support to both the importance of membrane remodelling and the release of lipid signals initiating stress protein response, which can operate in tandem to control the extent of the ultimate cellular thermosensitivity. Overall, we suggest that the fluidity variable of membranes should be used as an independent factor for predicting the efficacy of combinational cancer therapies.


Assuntos
Hipertermia Induzida , Fluidez de Membrana , Neoplasias/terapia , Animais , Membrana Celular/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Metabolismo dos Lipídeos , Neoplasias/metabolismo
6.
Curr Pharm Des ; 19(3): 309-46, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22920902

RESUMO

According to the "membrane sensor" hypothesis, the membrane's physical properties and microdomain organization play an initiating role in the heat shock response. Clinical conditions such as cancer, diabetes and neurodegenerative diseases are all coupled with specific changes in the physical state and lipid composition of cellular membranes and characterized by altered heat shock protein levels in cells suggesting that these "membrane defects" can cause suboptimal hsp-gene expression. Such observations provide a new rationale for the introduction of novel, heat shock protein modulating drug candidates. Intercalating compounds can be used to alter membrane properties and by doing so normalize dysregulated expression of heat shock proteins, resulting in a beneficial therapeutic effect for reversing the pathological impact of disease. The membrane (and lipid) interacting hydroximic acid (HA) derivatives discussed in this review physiologically restore the heat shock protein stress response, creating a new class of "membrane-lipid therapy" pharmaceuticals. The diseases that HA derivatives potentially target are diverse and include, among others, insulin resistance and diabetes, neuropathy, atrial fibrillation, and amyotrophic lateral sclerosis. At a molecular level HA derivatives are broad spectrum, multi-target compounds as they fluidize yet stabilize membranes and remodel their lipid rafts while otherwise acting as PARP inhibitors. The HA derivatives have the potential to ameliorate disparate conditions, whether of acute or chronic nature. Many of these diseases presently are either untreatable or inadequately treated with currently available pharmaceuticals. Ultimately, the HA derivatives promise to play a major role in future pharmacotherapy.


Assuntos
Pleiotropia Genética/fisiologia , Proteínas de Choque Térmico/biossíntese , Resposta ao Choque Térmico/fisiologia , Homeostase/fisiologia , Oximas/metabolismo , Animais , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/genética , Lipídeos de Membrana/metabolismo , Oximas/química
7.
PLoS One ; 6(12): e28818, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174906

RESUMO

Aging and pathophysiological conditions are linked to membrane changes which modulate membrane-controlled molecular switches, causing dysregulated heat shock protein (HSP) expression. HSP co-inducer hydroxylamines such as BGP-15 provide advanced therapeutic candidates for many diseases since they preferentially affect stressed cells and are unlikely have major side effects. In the present study in vitro molecular dynamic simulation, experiments with lipid monolayers and in vivo ultrasensitive fluorescence microscopy showed that BGP-15 alters the organization of cholesterol-rich membrane domains. Imaging of nanoscopic long-lived platforms using the raft marker glycosylphosphatidylinositol-anchored monomeric green fluorescent protein diffusing in the live Chinese hamster ovary (CHO) cell plasma membrane demonstrated that BGP-15 prevents the transient structural disintegration of rafts induced by fever-type heat stress. Moreover, BGP-15 was able to remodel cholesterol-enriched lipid platforms reminiscent of those observed earlier following non-lethal heat priming or membrane stress, and were shown to be obligate for the generation and transmission of stress signals. BGP-15 activation of HSP expression in B16-F10 mouse melanoma cells involves the Rac1 signaling cascade in accordance with the previous observation that cholesterol affects the targeting of Rac1 to membranes. Finally, in a human embryonic kidney cell line we demonstrate that BGP-15 is able to inhibit the rapid heat shock factor 1 (HSF1) acetylation monitored during the early phase of heat stress, thereby promoting a prolonged duration of HSF1 binding to heat shock elements. Taken together, our results indicate that BGP-15 has the potential to become a new class of pharmaceuticals for use in 'membrane-lipid therapy' to combat many various protein-misfolding diseases associated with aging.


Assuntos
Proteínas de Choque Térmico/metabolismo , Lipídeos de Membrana/uso terapêutico , Microdomínios da Membrana/metabolismo , Oximas/farmacologia , Piperidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Células CHO , Colesterol/metabolismo , Cricetinae , Cricetulus , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Melanoma/patologia , Microdomínios da Membrana/efeitos dos fármacos , Camundongos , Simulação de Dinâmica Molecular , Nanoestruturas/química , Temperatura , beta-Ciclodextrinas/farmacologia , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
Am J Respir Crit Care Med ; 181(10): 1072-7, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20133927

RESUMO

RATIONALE: Exacerbations of chronic obstructive pulmonary disease (COPD) acutely reduce skeletal muscle strength and result in long-term loss of functional capacity. OBJECTIVES: To investigate whether resistance training is feasible and safe and can prevent deteriorating muscle function during exacerbations of COPD. METHODS: Forty patients (FEV(1) 49 +/- 17% predicted) hospitalized with a severe COPD exacerbation were randomized to receive usual care or an additional resistance training program during the hospital admission. Patients were followed up for 1 month after discharge. Primary outcomes were quadriceps force and systemic inflammation. A muscle biopsy was taken in a subgroup of patients to assess anabolic and catabolic pathways. MEASUREMENTS AND MAIN RESULTS: Resistance training did not yield higher systemic inflammation as indicated by C-reactive protein levels and could be completed uneventfully. Enhanced quadriceps force was seen at discharge (+9.7 +/- 16% in the training group; -1 +/- 13% in control subjects; P = 0.05) and at 1 month follow-up in the patients who trained. The 6-minute walking distance improved after discharge only in the group who received resistance training (median 34; interquartile range, 14-61 m; P = 0.002). In a subgroup of patients a muscle biopsy showed a more anabolic status of skeletal muscle in patients who followed training. Myostatin was lower (P = 0.03) and the myogenin/MyoD ratio tended to be higher (P = 0.08) in the training group compared with control subjects. CONCLUSIONS: Resistance training is safe, successfully counteracts skeletal muscle dysfunction during acute exacerbations of COPD, and may up-regulate the anabolic milieu in the skeletal muscle. Clinical trial registered with www.clinicaltrials.gov (NCT00877084).


Assuntos
Debilidade Muscular/prevenção & controle , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/reabilitação , Músculo Quadríceps/fisiopatologia , Treinamento Resistido/métodos , Idoso , Análise de Variância , Biópsia , Proteína C-Reativa/metabolismo , Progressão da Doença , Feminino , Volume Expiratório Forçado , Humanos , Inflamação/sangue , Inflamação/etiologia , Masculino , Debilidade Muscular/etiologia , Debilidade Muscular/reabilitação , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Doença Pulmonar Obstrutiva Crônica/sangue , Músculo Quadríceps/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA