Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 4(12)2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31217345

RESUMO

TRIOBP remodels the cytoskeleton by forming unusually dense F-actin bundles and is implicated in human cancer, schizophrenia, and deafness. Mutations ablating human and mouse TRIOBP-4 and TRIOBP-5 isoforms are associated with profound deafness, as inner ear mechanosensory hair cells degenerate after stereocilia rootlets fail to develop. However, the mechanisms regulating formation of stereocilia rootlets by each TRIOBP isoform remain unknown. Using 3 new Triobp mouse models, we report that TRIOBP-5 is essential for thickening bundles of F-actin in rootlets, establishing their mature dimensions and for stiffening supporting cells of the auditory sensory epithelium. The coiled-coil domains of this isoform are required for reinforcement and maintenance of stereocilia rootlets. A loss of TRIOBP-5 in mouse results in dysmorphic rootlets that are abnormally thin in the cuticular plate but have increased widths and lengths within stereocilia cores, and causes progressive deafness recapitulating the human phenotype. Our study extends the current understanding of TRIOBP isoform-specific functions necessary for life-long hearing, with implications for insight into other TRIOBPopathies.


Assuntos
Audição/fisiologia , Proteínas dos Microfilamentos/fisiologia , Estereocílios/fisiologia , Actinas/fisiologia , Animais , Surdez/etiologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/deficiência , Isoformas de Proteínas/fisiologia , Estereocílios/ultraestrutura
2.
J Biol Chem ; 281(33): 23557-66, 2006 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-16790445

RESUMO

Voltage-gated calcium channels are multiprotein complexes that regulate calcium influx and are important contributors to cardiac excitability and contractility. The auxiliary beta-subunit (CaV beta) binds a conserved domain (the alpha-interaction domain (AID)) of the pore-forming CaV alpha1 subunit to modulate channel gating properties and promote cell surface trafficking. Recently, members of the RGK family of small GTPases (Rem, Rem2, Rad, Gem/Kir) have been identified as novel contributors to the regulation of L-type calcium channel activity. Here, we describe the Rem-association domain within CaV beta2a. The Rem interaction module is located in a approximately 130-residue region within the highly conserved guanylate kinase domain that also directs AID binding. Importantly, CaV beta mutants were identified that lost the ability to bind AID but retained their association with Rem, indicating that the AID and Rem association sites of CaV beta2a are structurally distinct. In vitro binding studies indicate that the affinity of Rem for CaV beta2a interaction is lower than that of AID for CaV beta2a. Furthermore, in vitro binding studies indicate that Rem association does not inhibit the interaction of CaV beta2a with AID. Instead, CaV beta can simultaneously associate with both Rem and CaV alpha1-AID. Previous studies had suggested that RGK proteins may regulate Ca2+ channel activity by blocking the association of CaV beta subunits with CaV alpha1 to inhibit plasma membrane trafficking. However, surface biotinylation studies in HIT-T15 cells indicate that Rem can acutely modulate channel function without decreasing the density of L-type channels at the plasma membrane. Together these data suggest that Rem-dependent Ca2+ channel modulation involves formation of a Rem x CaV beta x AID regulatory complex without the need to disrupt CaV alpha1 x CaV beta association or alter CaV alpha1 expression at the plasma membrane.


Assuntos
Canais de Cálcio Tipo L/química , Proteínas Monoméricas de Ligação ao GTP/química , Animais , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , Humanos , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia
3.
Am J Physiol Heart Circ Physiol ; 291(4): H1959-71, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16648185

RESUMO

Cardiac voltage-gated L-type Ca channels (Ca(V)) are multiprotein complexes, including accessory subunits such as Ca(V)beta2 that increase current expression. Recently, members of the Rad and Gem/Kir-related family of small GTPases have been shown to decrease current, although the mechanism remains poorly defined. In this study, we evaluated the contribution of the L-type Ca channel alpha-subunit (Ca(V)1.2) to Ca(V)beta2-Rem inhibition of Ca channel current. Specifically, we addressed whether protein kinase A (PKA) modulation of the Ca channel modifies Ca(V)beta2-Rem inhibition of Ca channel current. We first tested the effect of Rem on Ca(V)1.2 in human embryonic kidney 293 (HEK-293) cells using the whole cell patch-clamp configuration. Rem coexpression with Ca(V)1.2 reduces Ba current expression under basal conditions, and Ca(V)beta2a coexpression enhances Rem block of Ca(V)1.2 current. Surprisingly, PKA inhibition by 133 nM H-89 or 50 microM Rp-cAMP-S partially relieved the Rem-mediated inhibition of current activity both with and without Ca(V)beta2a. To test whether the H-89 action was a consequence of the phosphorylation status of Ca(V)1.2, we examined Rem regulation of the PKA-insensitive Ca(V)1.2 serine 1928 (S1928) to alanine mutation (Ca(V)1.2-S1928A). Ca(V)1.2-S1928A current was not inhibited by Rem and when coexpression with Ca(V)beta2a was not completely blocked by Rem coexpression, suggesting that the phosphorylation of S1928 contributes to Rem-mediated Ca channel modulation. As a model for native Ca channel complexes, we tested the ability of Rem overexpression in HIT-T15 cells and embryonic ventricular myocytes to interfere with native current. We find that native current is also sensitive to Rem block and that H-89 pretreatment relieves the ability of Rem to regulate Ca current. We conclude that Rem is capable of regulating L-type current, that release of Rem block is modulated by cellular kinase pathways, and that the Ca(V)1.2 COOH terminus contributes to Rem-dependent channel inhibition.


Assuntos
Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/fisiologia , Cálcio/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Canais de Cálcio Tipo L/genética , Linhagem Celular , Cricetinae , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Isoquinolinas/farmacologia , Mesocricetus , Camundongos , Camundongos Endogâmicos ICR , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Fosforilação , Sulfonamidas/farmacologia , Tionucleotídeos/farmacologia
4.
J Biol Chem ; 280(51): 41864-71, 2005 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-15728182

RESUMO

Voltage-dependent calcium (Ca2+) channels are involved in many specialized cellular functions and are controlled by a diversity of intracellular signals. Recently, members of the RGK family of small GTPases (Rem, Rem2, Rad, Gem/Kir) have been identified as novel contributors to the regulation of L-type calcium channel activity. In this study, microarray analysis of the mouse insulinoma MIN6 cell line revealed that the transcription of Rem2 gene is strongly induced by exposure to high glucose, which was confirmed by real-time reverse transcriptase-PCR and RNase protection analysis. Because elevation of intracellular Ca2+ in pancreatic beta-cells is essential for insulin secretion, we tested the hypothesis that Rem2 attenuates Ca2+ currents to regulate insulin secretion. Co-expression of Rem2 with CaV 1.2 or CaV1.3 L-type Ca + channels in a heterologous expression system completely inhibits de novo Ca2+ current expression. In addition, ectopic overexpression of Rem2 both inhibited L-type Ca2+ channel activity and prevented glucose-stimulated insulin secretion in pancreatic beta-cell lines. Co-immunoprecipitation studies demonstrate that Rem2 associates with a variety of CaVbeta subunits. Importantly, surface biotinylation studies demonstrate that the membrane distribution of Ca2+ channels was not reduced at a time when channel activity was potently inhibited by Rem2 expression, indicating that Rem2 modulates channel function without interfering with membrane trafficking. Taken together, these data suggest that inhibition of L-type Ca2+ channels by Rem2 signaling may represent a new and potentially important mechanism for regulating Ca2+-triggered exocytosis in hormone-secreting cells, including insulin secretion in pancreatic beta-cells.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Insulina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Animais , Sequência de Bases , Sinalização do Cálcio , Linhagem Celular , Linhagem Celular Tumoral , Primers do DNA , Glucose/farmacologia , Humanos , Imunoprecipitação , Secreção de Insulina , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA