Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38815731

RESUMO

INTRODUCTION: Shoulder periprosthetic joint infection (PJI) is most commonly caused by Cutibacterium. Effective removal of these bacteria from the skin is difficult because Cutibacterium live protected in the dermal sebaceous glands beneath the skin surface to which surgical preparation solutions, such as chlorhexidine gluconate (CHG), are applied. There is conflicting evidence on the additional benefit of using hydrogen peroxide (H2O2) as an adjunct to CHG in eliminating Cutibacterium from the skin. A previous study demonstrated that after CHG skin preparation, repopulation of Cutibacterium from sebaceous glands onto the skin surface occurs in 90% of shoulders by 60 minutes after application. The objective of this randomized controlled study was to determine the effectiveness of adding H2O2 to CHG in reducing skin Cutibacterium. METHODS: Eighteen male volunteers (36 shoulders) were recruited for this study. The two shoulders of each volunteer were randomized to receive the control preparation ("CHG-only" - 2% CHG in 70% isopropyl alcohol [ISA] alone) or the study preparation ("H2O2+CHG" - 3% H2O2 followed by 2% CHG in 70% ISA). Skin swabs were taken from each shoulder prior to skin preparation and again at 60 minutes after preparation. Swabs were cultured for Cutibacterium and observed for 14 days. Cutibacterium skin load was reported using a semi-quantitative system based on the number of quadrants growing on the culture plate. RESULTS: Prior to skin preparation, 100% of the CHG-only shoulders and 100% of the H2O2+CHG shoulders had positive skin surface cultures for Cutibacterium. Repopulation of Cutibacterium on the skin at 60 minutes occurred in 78% of CHG-only and 78% of H2O2+CHG shoulders (p=1.00). Reduction of Cutibacterium skin levels occurred in 56% of CHG-only and 61% of H2O2+CHG shoulders (p=0.735). Cutibacterium levels were significantly decreased from before skin preparation to 60 minutes after preparation in both the CHG-only (2.1 ± 0.8 to 1.3 ± 0.9, p=0.003) and the H2O2+CHG groups (2.2 ± 0.7 to 1.4 ± 0.9, p<0.001). Substantial skin surface levels of Cutibacterium were present at 60 minutes after both preparations. CONCLUSIONS: In this randomized controlled study, there was no additional benefit of using hydrogen peroxide as an adjunct to chlorhexidine gluconate skin preparation in the reduction of cutaneous Cutibacterium levels. Neither preparation was able to eliminate repopulation of Cutibacterium on the skin surface from the dermal sebaceous glands.

2.
J Orthop Trauma ; 37(10): 475-479, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127901

RESUMO

OBJECTIVE: To determine whether deficient early callus formation can be defined objectively based on the association with an eventual nonunion and specific patient, injury, and treatment factors. METHODS: Final healing outcomes were documented for 160 distal femur fractures treated with locked bridge plate fixation. Radiographic callus was measured on postoperative radiographs until union or nonunion had been declared by the treating surgeon. Deficient callus was defined at 6 and 12 weeks based on associations with eventual nonunion through receiver-operator characteristic analysis. A previously described computational model estimated fracture site motion based on the construct used. Univariable and multivariable analyses then examined the association of patient, injury, and treatment factors with deficient callus formation. RESULTS: There were 26 nonunions. The medial callus area at 6 weeks <24.8 mm 2 was associated with nonunion (12 of 39, 30.8%) versus (12 of 109, 11.0%), P = 0.010. This association strengthened at 12 weeks with medial callus area <44.2 mm 2 more closely associated with nonunion (13 of 28, 46.4%) versus (11 of 120, 9.2%), P <0.001. Multivariable logistic regression analysis found limited initial longitudinal motion (OR 2.713 (1.12-6.60), P = 0.028)) and Charlson Comorbidity Index (1.362 (1.11-1.67), P = 0.003) were independently associated with deficient callus at 12 weeks. Open fracture, mechanism of injury, smoking, diabetes, plate material, bridge span, and shear were not significantly associated with deficient callus. CONCLUSION: Deficient callus at 6 and 12 weeks is associated with eventual nonunion, and such assessments may aid future research into distal femur fracture healing. Deficient callus formation was independently associated with limited initial longitudinal fracture site motion derived through computational modeling of the surgical construct but not more routinely discussed parameters such as plate material and bridge span. Given this, improved methods of in vivo assessment of fracture site motion are necessary to further our ability to optimize the mechanical environment for healing. LEVEL OF EVIDENCE: Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Fraturas Femorais Distais , Fraturas do Fêmur , Humanos , Consolidação da Fratura , Fraturas do Fêmur/diagnóstico por imagem , Fraturas do Fêmur/cirurgia , Fixação Interna de Fraturas/métodos , Estudos Retrospectivos , Placas Ósseas , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA