Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Food Sci ; 89(3): 1373-1386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38343299

RESUMO

Onion is rich in bioactive and volatile compounds with antioxidant activity. However, the pungent odor of volatile compounds (VOCs) released restricts its use. The encapsulation of red onion extract by electrospinning is an alternative to mask this odor and protect its bioactive compounds. The main objective of this study was to encapsulate red onion bulb extract (ROE) in different concentrations into zein nanofibers by electrospinning and evaluate their thermal, antioxidant, and hydrophilicity properties. The major VOC in ROE was 3(2H)-furanone, 2-hexyl-5-methyl. Incorporating ROE into the polymeric solutions increased electrical conductivity and decreased apparent viscosity, rendering nanofibers with a lower average diameter. The loading capacity of ROE on fibers was high, reaching 91.5% (10% ROE). The morphology of the nanofibers was random and continuous; however, it showed beads at the highest ROE concentration (40%). The addition of ROE to the nanofibers increased their hydrophilicity. The nanofibers' antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl, nitric oxide, and hydroxyl radicals ranged from 32.5% to 57.3%. The electrospun nanofibers have the potential to protect and mask VOCs. In addition, they offer a sustainable alternative to the synthetic antioxidants commonly employed in the food and packaging industry due to their antioxidant activities.


Assuntos
Nanofibras , Zeína , Cebolas , Antioxidantes , Interações Hidrofóbicas e Hidrofílicas , Extratos Vegetais
2.
Int J Biol Macromol ; 254(Pt 1): 127617, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37879583

RESUMO

Starches from alternative sources, such as avocado seed, have potential for application in the encapsulation of essential oils. This study aimed to extract starch from avocado seeds and its use as wall material to encapsulate ginger essential oil (GEO), at different concentrations. The fibers were produced by electrospinning and evaluated by morphology, size, infrared spectra, thermogravimetric properties, contact angle, loading capacity, and antibacterial activity. The major compounds in GEO were α-zingiberene, ß-sesquiphellandrene, α-farnesene, and α-curcumene. The starch-GEO fibers presented a higher diameter (∼553 nm) than those without GEO (345 nm). Encapsulation of GEO in starch fibers increased their thermal degradation temperatures from 165.8 °C (free GEO) to 257.6 °C (40 % GEO fibers). The starch-GEO fibers presented characteristic bands of their constituents by infrared spectra. Loading capacity ranged from 44 to 54 %. The fibers showed hydrophilic character, with a contact angle of <90°. Free GEO and the fibers with 50 % of GEO displayed antibacterial activity against Escherichia coli, proving the bioactivity of the starch-GEO fibers and its possible applicability for food packaging. Avocado seed starch showed to be a great wall material for GEO encapsulation.


Assuntos
Óleos Voláteis , Persea , Zingiber officinale , Amido , Óleos Voláteis/farmacologia , Antibacterianos/farmacologia
3.
Biosci. j. (Online) ; 38: e38064, Jan.-Dec. 2022. graf
Artigo em Inglês | LILACS | ID: biblio-1396660

RESUMO

Pinhão is highly perishable due to its high water activity, being easily affected by fungi during storage and also susceptible to infestation by larvae. This seed is usually marketed in the pinhão cones itself, or bulk threshed, and packed in plastic bags, chilled or ground frozen. Pinhão conservation and industrialization techniques should be developed to promote its commercialization and consumption at other times of the year, besides the seasonal period, encouraging its sustainable production, extraction and commercialization, considering its essentially extractive character. The objective of this study was to evaluate the conservation of pinhão by the use of gamma radiation and refrigeration. The pinhões were irradiated with a cobalt­60 source at a dose rate of 1 kGy. A non-irradiated sample was used as a control. The pinhões were packed in high-density polyethylene bags and stored at ambient temperature and refrigerated at 4 ºC, during 90 days. Pinhões were evaluated for weight loss, acidity, reducing sugars, vitamin C, firmness, color, total phenolic compounds, antioxidant activity and microbiological analyzes. The isolated use of gamma radiation was not effective for the maintenance of the evaluated parameters. However, when used in conjunction with refrigerated storage, it reduced the growth of aerobic fungi, as well as mesophilic and psychrotrophic microorganisms. The isolated use of refrigeration showed a reduction in weight loss, reducing sugars and an increase in vitamin C content and antioxidant activity. Thus, to increase the benefits, we suggest evaluating higher doses of radiation as a function of the thick pinhão shell.


Assuntos
Radiação Ionizante , Refrigeração , Conservantes de Alimentos , Araucaria , Sementes
4.
J Food Sci ; 86(7): 2886-2897, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34057206

RESUMO

This study aimed to produce soluble potato starch ultrafine fibers for the encapsulation of pinhão coat extract (PCE), evaluating their relative crystallinity (RC), thermal stability, antioxidant activity, antimicrobial activity against Escherichia coli and Staphylococcus aureus, as well as in vitro biological digestion. In the simulation of in vitro biological digestion, the phenolic compounds release profile was also evaluated. The ultrafine fibers were produced by electrospinning, based on a polymeric solution composed of soluble potato starch (50% w/v) and formic acid. Then, PCE was incorporated at various concentrations (0.5%, 1.0%, and 1.5%, w/w, dry basis). The endothermic event of free PCE was not observed in the ultrafine fibers, which suggests its encapsulation. The RC decreased according to the increase in PCE concentration in the ultrafine fibers. The PCE resisted thermal treatments when encapsulated into the ultrafine fibers (100 and 180°C), and the ultrafine fibers with 1% PCE presented the highest amount of preserved phenolic compounds. Regarding antioxidant activity, the free PCE presented 85% of DPPH inhibition and the ultrafine fibers had 18% inhibition, not differing among the PCE concentrations (p < 0.05). The free PCE and the ultrafine fibers with 0.5% PCE showed inhibitory effect against S. aureus and the ones with 1.5% PCE showed controlled release of phenolic compounds during the simulation of in vitro digestion. Starch ultrafine fibers showed potential to be applied in food industries due to their capacity of protecting phenolic compounds when submitted to high temperatures or gastrointestinal conditions. Nevertheless, their application depends on the end use of the product. PRACTICAL APPLICATION: The encapsulation of pinhão coat extract (PCE) in ultrafine starch fibers promotes greater preservation of phenolic compounds. Thus, it can be incorporated into different foods that are produced using the ultra-high temperature (UHT) process-at 135-145°C for 5 to 10 s, or some other equivalent time/temperature combination. Another possibility is the incorporation of ultrafine fibers in active packaging: compounds can migrate to food, improving sensory characteristics, increasing shelf life, preventing chemical and microbiological deterioration, and ensuring food safety.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Araucaria/química , Bactérias/efeitos dos fármacos , Digestão , Material Particulado/farmacologia , Extratos Vegetais/farmacologia , Antibacterianos/química , Antioxidantes/química , Bactérias/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Técnicas In Vitro , Material Particulado/química , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/química , Polímeros/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Amido/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA