Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37896826

RESUMO

Exacerbated inflammatory responses are a hallmark of severe coronavirus disease 2019 (COVID-19). Zileuton (Zi) is a selective inhibitor of 5-lipoxygenase, an enzyme involved in the production of several inflammatory/pro-resolving lipid mediators. Herein, we investigated the effect of Zi treatment in a severe acute respiratory syndrome (SARS) model. Mouse hepatitis virus (MHV)3-infected mice treated with Zi significantly improved the clinical score, weight loss, cardiopulmonary function, and survival rates compared with infected untreated animals. The protection observed in Zi-treated mice was associated with a lower inflammatory score, reduced dendritic cell-producing tumor necrosis factor (TNF), and increased neutrophil-producing interleukin (IL)-10 in the lungs three days after infection (dpi). At 5 dpi, the lungs of treated mice showed an increase in Th2-, Treg CD4+-, and Treg CD8+-producing IL-10 and reduced Th1 infiltrating cells. Furthermore, similar results were found upon Zi treatment after SARS-CoV-2 infection in transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2), significantly improving the clinical score, weight loss, and lung inflammatory score compared with untreated animals. Our data suggest that Zi protects against developing severe lung disease during SARS induced by betacoronavirus without affecting the host's capacity to deal with infection.


Assuntos
COVID-19 , Inibidores de Lipoxigenase , Humanos , Camundongos , Animais , SARS-CoV-2 , COVID-19/patologia , Pulmão , Camundongos Transgênicos , Imunidade Inata , Redução de Peso , Modelos Animais de Doenças
2.
Proteomics ; 22(17): e2200095, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35666001

RESUMO

Breast cancer is the most prevalent cancer in women worldwide. Its molecular subtypes are based on the presence/absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). MACL-1 and MGSO-3 are cell lines derived from primary tumor sites of patients diagnosed with luminal A subtype carcinoma (ER+/PR+/HER2-) and ductal carcinoma in situ (ER-/PR-/HER2+), respectively. However, these cell lines lost the expression of these markers over cell culturing, and both have triple-negative phenotypes (ER-/PR-/HER2-), which has the poorest prognosis. Here, we sought to study the proteome signature of MGSO-3 and MACL-1, comparing them with the epithelial cell line MCF-10A and the well-established metastatic-derived breast cancer cell line MDA-MB-231. Our results showed that proteins associated with the tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OXPHOS) were upregulated in MGSO-3 and MACL-1 cells. These cell lines also showed upregulation of pro-apoptotic proteins when compared with MDA-MB-231. The molecular differences highlighted in this study may clarify the molecular basis behind cancer cells functioning and may reveal novel signatures across the breast cancer cell models.


Assuntos
Neoplasias da Mama , Carcinoma , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Carcinoma/patologia , Linhagem Celular , Feminino , Humanos , Proteômica , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo
3.
Clin Immunol ; 234: 108913, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954347

RESUMO

Chagas disease has a complex pathogenesis wherein the host immune response is essential for controlling its development. Suppressor of cytokine signaling(SOCS)2 is a crucial protein that regulates cytokine production. In this study, SOCS2 deficiency resulted in an initial imbalance of IL12- and IL-10-producing neutrophils and dendritic cells (DCs), which caused a long-lasting impact reducing inflammatory neutrophils and DCs, and tolerogenic DCs at the peak of acute disease. A reduced number of inflammatory and pro-resolving macrophages, and IL17A-producing CD4+ T cells, and increased lymphocyte apoptosis was found in SOCS2-deficient mice. Electrocardiogram analysis of chimeric mice showed that WT mice that received SOCS2 KO bone marrow transplantation presented increased heart dysfunction. Taken together, the results demonstrated that SOCS2 is a crucial regulator of the immune response during Trypanosoma cruzi infection, and suggest that a SOCS2 genetic polymorphism, or failure of its expression, may increase the susceptibility of cardiomyopathy development in Chagasic patients.


Assuntos
Cardiomiopatias/etiologia , Doença de Chagas/imunologia , Células Dendríticas/imunologia , Neutrófilos/imunologia , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Animais , Transplante de Medula Óssea , Doença de Chagas/complicações , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia , Proteínas Supressoras da Sinalização de Citocina/genética , Células Th17/imunologia
4.
Molecules ; 26(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34770848

RESUMO

This work aimed to prepare a nanoemulsion containing the essential oil of the Protium heptaphyllum resin and evaluate its biocidal activities against the different stages of development of the Aedes aegypti mosquito. Ovicide, pupicide, adulticide and repellency assays were performed. The main constituents were p-cymene (27.70%) and α-pinene (22.31%). The developed nanoemulsion showed kinetic stability and monomodal distribution at a hydrophilic-lipophilic balance of 14 with a droplet size of 115.56 ± 1.68 nn and a zeta potential of -29.63 ± 3.46 mV. The nanoemulsion showed insecticidal action with LC50 0.404 µg·mL-1 for the ovicidal effect. In the pupicidal test, at the concentration of 160 µg·mL-1, 100% mortality was reached after 24 h. For adulticidal activity, a diagnostic concentration of 200 µg·mL-1 (120 min) was determined. In the repellency test, a concentration of 200 µg·mL-1 during the 180 min of the test showed a protection index of 77.67%. In conclusion, the nanobiotechnological product derived from the essential oil of P. heptaphyllum resin can be considered as a promising colloid that can be used to control infectious disease vectors through a wide range of possible modes of applications, probably as this bioactive delivery system may allow the optimal effect of the P. heptaphyllum terpenes in aqueous media and may also induce satisfactory delivery to air interfaces.


Assuntos
Aedes/efeitos dos fármacos , Inseticidas/química , Inseticidas/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Sapindaceae/química , Animais , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Emulsões , Estrutura Molecular , Nanopartículas , Resinas Vegetais/química
5.
Cell Immunol ; 369: 104427, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34482259

RESUMO

Chagas disease is an important disease of the heart. Lipoxins have important regulatory functions in host immune response (IR). Herein, we examined whether the receptor for lipoxin A4, the formyl peptide receptor (FPR) 2, had an effect on Trypanosoma cruzi infection. In vitro, FPR2 deficiency or inhibition improved the activity of macrophages against T. cruzi. In vivo, during the acute phase, the absence of FPR2 reduced parasitemia and increased type 2 macrophages, type 2 neutrophils, and IL-10-producing dendritic cells. Moreover, the acquired IR was characterized by greater proportions of Th1/Th2/Treg, and IFNγ-producing CD8+T cells, and reductions in Th17 and IL-17-producing CD8+T cells. However, during the chronic phase, FPR2 deficient mice presented and increased inflammatory profile regarding innate and acquired IR cells (Th1/IFN-γ-producing CD8+T cells). Notably, FPR2 deficiency resulted in increased myocarditis and impaired heart function. Collectively, our data suggested that FPR2 is important for the orchestration of IR and prevention of severe T. cruzi-induced disease.


Assuntos
Cardiomiopatia Chagásica/imunologia , Miocardite/imunologia , Receptores de Formil Peptídeo/imunologia , Animais , Cardiomiopatia Chagásica/complicações , Modelos Animais de Doenças , Feminino , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/imunologia
6.
PLoS Pathog ; 16(3): e1008379, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32160269

RESUMO

Chagas Disease (CD) is one of the leading causes of heart failure and sudden death in Latin America. Treatments with antioxidants have provided promising alternatives to ameliorate CD. However, the specific roles of major reactive oxygen species (ROS) sources, including NADPH-oxidase 2 (NOX2), mitochondrial-derived ROS and nitric oxide (NO) in the progression or resolution of CD are yet to be elucidated. We used C57BL/6 (WT) and a gp91PHOX knockout mice (PHOX-/-), lacking functional NOX2, to investigate the effects of ablation of NOX2-derived ROS production on the outcome of acute chagasic cardiomyopathy. Infected PHOX-/- cardiomyocytes displayed an overall pro-arrhythmic phenotype, notably with higher arrhythmia incidence on ECG that was followed by higher number of early afterdepolarizations (EAD) and 2.5-fold increase in action potential (AP) duration alternans, compared to AP from infected WT mice. Furthermore, infected PHOX-/- cardiomyocytes display increased diastolic [Ca2+], aberrant Ca2+ transient and reduced Ca2+ transient amplitude. Cardiomyocyte contraction is reduced in infected WT and PHOX-/- mice, to a similar extent. Nevertheless, only infected PHOX-/- isolated cardiomyocytes displayed significant increase in non-triggered extra contractions (appearing in ~75% of cells). Electro-mechanical remodeling of infected PHOX-/-cardiomyocytes is associated with increase in NO and mitochondria-derived ROS production. Notably, EADs, AP duration alternans and in vivo arrhythmias were reverted by pre-incubation with nitric oxide synthase inhibitor L-NAME. Overall our data show for the first time that lack of NOX2-derived ROS promoted a pro-arrhythmic phenotype in the heart, in which the crosstalk between ROS and NO could play an important role in regulating cardiomyocyte electro-mechanical function during acute CD. Future studies designed to evaluate the potential role of NOX2-derived ROS in the chronic phase of CD could open new and more specific therapeutic strategies to treat CD and prevent deaths due to heart complications.


Assuntos
Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Cardiomiopatia Chagásica/metabolismo , Miócitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doença Aguda , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Cardiomiopatia Chagásica/genética , Cardiomiopatia Chagásica/patologia , Cardiomiopatia Chagásica/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo
8.
Trends Cardiovasc Med ; 27(2): 81-91, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27622432

RESUMO

Chagas disease is caused by the trypanosomatid Trypanosoma cruzi, which chronically causes heart problems in up to 30% of infected patients. Chagas disease was initially restricted to Latin America. However, due to migratory events, this disease may become a serious worldwide health problem. During Chagas disease, many patients die of cardiac arrhythmia despite the apparent benefits of anti-arrhythmic therapy (e.g., amiodarone). Here, we assimilate the cardiac form of Chagas disease to an inflammatory cardiac disease. Evidence from the literature, mostly provided using experimental models, supports this view and argues in favor of new strategies for treating cardiac arrhythmias in Chagas disease by modulating cytokine production and/or action. But the complex nature of myocardial inflammation underlies the need to better understand the molecular mechanisms of the inflammatory response during Chagas disease. Here, particular attention has been paid to tumor necrosis factor alpha (TNF) and transforming growth factor beta (TGF-ß) although other cytokines may be involved in the chagasic cardiomyopathy.


Assuntos
Cardiomiopatia Chagásica/metabolismo , Sistema de Condução Cardíaco/metabolismo , Mediadores da Inflamação/metabolismo , Miocardite/metabolismo , Miócitos Cardíacos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Trypanosoma cruzi/patogenicidade , Fator de Necrose Tumoral alfa/metabolismo , Potenciais de Ação , Animais , Anti-Inflamatórios/uso terapêutico , Remodelamento Atrial , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/fisiopatologia , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/parasitologia , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Contração Miocárdica , Miocardite/tratamento farmacológico , Miocardite/parasitologia , Miocardite/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/parasitologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Remodelação Ventricular
9.
Vascul Pharmacol ; 82: 73-81, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26988253

RESUMO

Vascular disorders have a direct link to mortality in the acute phase of Trypanosoma cruzi infection. However, the underlying mechanisms of vascular dysfunction in this phase are largely unknown. We hypothesize that T. cruzi invades endothelial cells causing dysfunction in contractility and relaxation of the mouse aorta. Immunodetection of T. cruzi antigen TcRBP28 was observed in endothelial cells. There was a decreased endothelial nitric oxide synthase (eNOS)-derived NO-dependent vascular relaxation, and increased vascular contractility accompanied by augmented superoxide anions production. Endothelial removal, inhibition of cyclooxygenase 2 (COX-2), blockade of thromboxane A2 (TXA2) TP receptors, and scavenger of superoxide normalized the contractile response. COX-2, thromboxane synthase, inducible nitric oxide synthase (iNOS), p65 NFκB subunit and p22(phox) of NAD(P)H oxidase (NOX) subunit expressions were increased in vessels of chagasic animals. Serum TNF-α was augmented. Basal NO production, and nitrotyrosine residue expression were increased. It is concluded that T. cruzi invades mice aorta endothelial cells and increases TXA2/TP receptor/NOX-derived superoxide formation. Alongside, T. cruzi promotes systemic TNF-α increase, which stimulates iNOS expression in vessels and nitrosative stress. In light of the heart failure that develops in the chronic phase of the disease, to understand the mechanism involved in the increased contractility of the aorta is crucial.


Assuntos
Aorta Torácica/metabolismo , Doença de Chagas/metabolismo , Células Endoteliais/metabolismo , Trypanosoma cruzi/patogenicidade , Vasodilatação , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/parasitologia , Aorta Torácica/fisiopatologia , Doença de Chagas/parasitologia , Doença de Chagas/fisiopatologia , Ciclo-Oxigenase 2/metabolismo , Grupo dos Citocromos b/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/parasitologia , Interações Hospedeiro-Patógeno , Masculino , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Transdução de Sinais , Superóxidos/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/sangue , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
10.
J Appl Physiol (1985) ; 115(1): 107-15, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23640594

RESUMO

We tested the effects of low-intensity endurance training (LIET) on the structural and mechanical properties of right (RV) and left ventricular (LV) myocytes. Male Wistar rats (4 mo old) were randomly divided into control (C, n = 7) and trained (T, n = 7, treadmill running at 50-60% of maximal running speed for 8 wk) groups. Isolated ventricular myocyte dimensions, contractility, Ca(2+) transients {intracellular Ca(2+) concentration ([Ca(2+)]i)}, and ventricular [Ca(2+)]i regulatory proteins were measured. LIET augmented cell length (C, 152.5 ± 2.0 µm vs. T, 162.2 ± 2.1 µm; P < 0.05) and volume (C, 5,162 ± 131 µm(3) vs. T, 5,506 ± 132 µm(3); P < 0.05) in the LV but not in the RV. LIET increased cell shortening (C, 7.5 ± 0.3% vs. T, 8.6 ± 0.3%; P < 0.05), the [Ca(2+)]i transient amplitude (C, 2.49 ± 0.06 F/F0 vs. T, 2.82 ± 0.06 F/F0; P < 0.05), the expression of sarcoplasmic reticulum Ca(2+)-ATPase 2a (C, 1.07 ± 0.13 vs. T, 1.59 ± 0.12; P < 0.05), and the levels of phosphorylated phospholamban at serine 16 (C, 0.99 ± 0.11 vs. T, 1.34 ± 0.10; P < 0.05), and reduced the total phospholamban-to-sarcoplasmic reticulum Ca(2+)-ATPase 2a ratio (C, 1.19 ± 0.15 vs. T, 0.40 ± 0.16; P < 0.05) in the LV without changing such parameters in the RV. In conclusion, LIET affected the structure and improved the mechanical properties of LV but not of RV myocytes in rats, helping to characterize the functional and morphological changes that accompany the endurance training-induced cardiac remodeling.


Assuntos
Miócitos Cardíacos/fisiologia , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Animais , Western Blotting , Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Separação Celular , Ventrículos do Coração/citologia , Técnicas In Vitro , Masculino , Contração Muscular/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/ultraestrutura , Ratos , Ratos Wistar , Corrida , Função Ventricular Direita/fisiologia
11.
Am J Pathol ; 181(1): 130-40, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22658486

RESUMO

Infection with Trypanosoma cruzi induces inflammation, which limits parasite proliferation but may result in chagasic heart disease. Suppressor of cytokine signaling 2 (SOCS2) is a regulator of immune responses and may therefore participate in the pathogenesis of T. cruzi infection. SOCS2 is expressed during T. cruzi infection, and its expression is partially reduced in infected 5-lipoxygenase-deficient [knockout (KO)] mice. In SOCS2 KO mice, there was a reduction in both parasitemia and the expression of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), IL-6, IL-10, SOCS1, and SOCS3 in the spleen. Expression of IFN-γ, TNF-α, SOCS1, and SOCS3 was also reduced in the hearts of infected SOCS2 KO mice. There was an increase in the generation and expansion of T regulatory (Treg) cells and a decrease in the number of memory cells in T. cruzi-infected SOCS2 KO mice. Levels of lipoxinA(4) (LXA(4)) increased in these mice. Echocardiography studies demonstrated an impairment of cardiac function in T. cruzi-infected SOCS2 KO mice. There were also changes in calcium handling and in action potential waveforms, and reduced outward potassium currents in isolated cardiac myocytes. Our data suggest that reductions of inflammation and parasitemia in infected SOCS2-deficient mice may be secondary to the increases in Treg cells and LXA(4) levels. This occurs at the cost of greater infection-associated heart dysfunction, highlighting the relevance of balanced inflammatory and immune responses in preventing severe T. cruzi-induced disease.


Assuntos
Cardiomiopatia Chagásica/imunologia , Proteínas Supressoras da Sinalização de Citocina/imunologia , Doença Aguda , Animais , Araquidonato 5-Lipoxigenase/fisiologia , Células Cultivadas , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/patologia , Cardiomiopatia Chagásica/fisiopatologia , Citocinas/biossíntese , Modelos Animais de Doenças , Coração/parasitologia , Lipoxinas/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/imunologia , Carga Parasitária , Parasitemia/imunologia , Técnicas de Patch-Clamp , Proteínas Supressoras da Sinalização de Citocina/deficiência , Subpopulações de Linfócitos T/imunologia , Trypanosoma cruzi/isolamento & purificação
12.
J Ethnopharmacol ; 124(3): 440-3, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19505550

RESUMO

AIM OF THE STUDY: Aniba rosaeodora is an aromatic plant which has been used in Brazil folk medicine due to its sedative effect. Therefore, the purpose of the present study was to evaluate the sedative effect of linalool-rich rosewood oil in mice. In addition we sought to investigate the linalool-rich oil effects on the isolated nerve using the single sucrose-gap technique. MATERIALS AND METHODS: Sedative effect was determined by measuring the potentiation of the pentobarbital-induced sleeping time. The compound action potential amplitude was evaluated as a way to detect changes in excitability of the isolated nerve. RESULTS: The results showed that administration of rosewood oil at the doses of 200 and 300 mg/kg significantly decreased latency and increased the duration of sleeping time. On the other hand, the dose of 100 mg/kg potentiated significantly the pentobarbital action decreasing pentobarbital latency time and increasing pentobarbital sleeping time. In addition, the effect of linalool-rich rosewood oil on the isolated nerve of the rat was also investigated through the single sucrose-gap technique. The amplitude of the action potential decreased almost 100% when it was incubated for 30 min at 100 microg/ml. CONCLUSIONS: From this study, it is suggested a sedative effect of linalool-rich rosewood oil that could, at least in part, be explained by the reduction in action potential amplitude that provokes a decrease in neuronal excitability.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Hipnóticos e Sedativos , Lauraceae/química , Óleos de Plantas/farmacologia , Monoterpenos Acíclicos , Animais , Comportamento Animal/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Camundongos , Monoterpenos/química , Monoterpenos/farmacologia , Condução Nervosa/efeitos dos fármacos , Pentobarbital/farmacologia , Óleos de Plantas/análise , Ratos , Ratos Wistar , Sono/efeitos dos fármacos , Sacarose
13.
Br J Pharmacol ; 140(7): 1331-9, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645142

RESUMO

1. The aim of this work was to study the effects of N-salicyloyltryptamine (STP), a novel anticonvulsant agent, on voltage-gated ion channels in GH3 cells. 2. In this study, we show that STP at 17 microM inhibited up to 59.2+/-10.4% of the Ito and 73.1+/-8.56% of the IKD K+ currents in GH3 cells. Moreover, the inhibitory activity of the drug STP on K+ currents was dose-dependent (IC50=34.6+/-8.14 microM for Ito) and partially reversible after washing off. 3. Repeated stimulation at 1 Hz (STP at 17 microM) led to the total disappearance of Ito current, and an enhancement of IKD. 4. In the cell-attached configuration, application of STP to the bath increased the open probability of large-conductance Ca2+-activated K+ channels. 5. STP at 17 microM inhibited the L-type Ca2+ current by 54.9+/-7.50% without any significant changes in the voltage dependence. 6. STP at 170 microM inhibited the TTX-sensitive Na+ current by 22.1+/-2.41%. At a lower concentration (17 microM), no effect on INa was observed. 7. The pharmacological profile described here might contribute to the neuroprotective effect exerted by this compound in experimental 'in vivo' models.


Assuntos
Anticonvulsivantes/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Potássio/efeitos dos fármacos , Salicilatos/farmacologia , Canais de Sódio/efeitos dos fármacos , Triptaminas/farmacologia , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Técnicas de Patch-Clamp , Neoplasias Hipofisárias/patologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA