Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(15): 11267-11287, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34288674

RESUMO

Cysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and COVID-19 (3CL protease, cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs. We have developed a novel class of self-masked aldehyde inhibitors (SMAIs) for cruzain, the major cysteine protease of the causative agent of Chagas disease-Trypanosoma cruzi. These SMAIs exerted potent, reversible inhibition of cruzain (Ki* = 18-350 nM) while apparently protecting the free aldehyde in cell-based assays. We synthesized prodrugs of the SMAIs that could potentially improve their pharmacokinetic properties. We also elucidated the kinetic and chemical mechanism of SMAIs and applied this strategy to the design of anti-SARS-CoV-2 inhibitors.


Assuntos
Aldeídos/química , Tratamento Farmacológico da COVID-19 , Doença de Chagas/tratamento farmacológico , Inibidores de Cisteína Proteinase/uso terapêutico , SARS-CoV-2/enzimologia , Trypanosoma cruzi/enzimologia , Aldeídos/metabolismo , Aldeídos/farmacologia , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/química , Desenho de Fármacos , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , SARS-CoV-2/efeitos dos fármacos , Relação Estrutura-Atividade , Trypanosoma cruzi/efeitos dos fármacos
2.
J Med Chem ; 63(6): 3298-3316, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32125159

RESUMO

Cruzain, an essential cysteine protease of the parasitic protozoan, Trypanosoma cruzi, is an important drug target for Chagas disease. We describe here a new series of reversible but time-dependent inhibitors of cruzain, composed of a dipeptide scaffold appended to vinyl heterocycles meant to provide replacements for the irreversible reactive "warheads" of vinyl sulfone inactivators of cruzain. Peptidomimetic vinyl heterocyclic inhibitors (PVHIs) containing Cbz-Phe-Phe/homoPhe scaffolds with vinyl-2-pyrimidine, vinyl-2-pyridine, and vinyl-2-(N-methyl)-pyridine groups conferred reversible, time-dependent inhibition of cruzain (Ki* = 0.1-0.4 µM). These cruzain inhibitors exhibited moderate to excellent selectivity versus human cathepsins B, L, and S and showed no apparent toxicity to human cells but were effective in cell cultures of Trypanosoma brucei brucei (EC50 = 1-15 µM) and eliminated T. cruzi in infected murine cardiomyoblasts (EC50 = 5-8 µM). PVHIs represent a new class of cruzain inhibitors that could progress to viable candidate compounds to treat Chagas disease and human sleeping sickness.


Assuntos
Inibidores de Cisteína Proteinase/farmacologia , Peptidomiméticos/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Tripanossomicidas/farmacologia , Compostos de Vinila/farmacologia , Animais , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/metabolismo , Desenho de Fármacos , Ensaios Enzimáticos , Humanos , Cinética , Camundongos , Simulação de Acoplamento Molecular , Mioblastos Cardíacos/efeitos dos fármacos , Peptidomiméticos/síntese química , Peptidomiméticos/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Piridinas/síntese química , Piridinas/metabolismo , Piridinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Compostos de Vinila/síntese química , Compostos de Vinila/metabolismo
3.
PLoS One ; 14(4): e0211525, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31034523

RESUMO

Uridylate insertion/deletion RNA editing in Trypanosoma brucei is a complex system that is not found in humans, so there is interest in targeting this system for drug development. This system uses hundreds of small non-coding guide RNAs (gRNAs) to modify the mitochondrial mRNA transcriptome. This process occurs in holo-editosomes that assemble several macromolecular trans factors around mRNA including the RNA-free RNA editing core complex (RECC) and auxiliary ribonucleoprotein (RNP) complexes. Yet, the regulatory mechanisms of editing remain obscure. The enzymatic accessory RNP complex, termed the REH2C, includes mRNA substrates and products, the multi-domain 240 kDa RNA Editing Helicase 2 (REH2) and an intriguing 8-zinc finger protein termed REH2-Associated Factor 1 (H2F1). Both of these proteins are essential in editing. REH2 is a member of the DExH/RHA subfamily of RNA helicases with a conserved C-terminus that includes a regulatory OB-fold domain. In trypanosomes, H2F1 recruits REH2 to the editing apparatus, and H2F1 downregulation causes REH2 fragmentation. Our systematic mutagenesis dissected determinants in REH2 and H2F1 for the assembly of REH2C, the stability of REH2, and the RNA-mediated association of REH2C with other editing trans factors. We identified functional OB-fold amino acids in eukaryotic DExH/RHA helicases that are conserved in REH2 and that impact the assembly and interactions of REH2C. H2F1 upregulation stabilized REH2 in vivo. Mutation of the core cysteines or basic amino acids in individual zinc fingers affected the stabilizing property of H2F1 but not its interactions with other examined editing components. This result suggests that most, if not all, fingers may contribute to REH2 stabilization. Finally, a recombinant REH2 (240 kDa) established that the full-length protein is a bona fide RNA helicase with ATP-dependent unwinding activity. REH2 is the only DExH/RHA-type helicase in kinetoplastid holo-editosomes.


Assuntos
Edição de RNA , RNA Helicases/metabolismo , Trypanosoma brucei brucei/enzimologia , Humanos , Mutação , RNA Helicases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcriptoma , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/parasitologia
4.
J Biol Chem ; 285(2): 1220-8, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19850921

RESUMO

Regulation of gene expression in kinetoplastid mitochondria is largely post-transcriptional and involves the orchestration of polycistronic RNA processing, 3'-terminal maturation, RNA editing, turnover, and translation; however, these processes remain poorly studied. Core editing complexes and their U-insertion/deletion activities are relatively well characterized, and a battery of ancillary factors has recently emerged. This study characterized a novel DExH-box RNA helicase, termed here REH2 (RNA editing associated helicase 2), in unique ribonucleoprotein complexes that exhibit unwinding and guide RNA binding activities, both of which required a double-stranded RNA-binding domain (dsRBD) and a functional helicase motif I of REH2. REH2 complexes and recently identified related particles share a multiprotein core but are distinguished by several differential polypeptides. Finally, REH2 associates transiently, via RNA, with editing complexes, mitochondrial ribosomes, and several ancillary factors that control editing and RNA stability. We propose that these putative higher order structures coordinate mitochondrial gene expression.


Assuntos
Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Proteínas de Protozoários/metabolismo , RNA Helicases/metabolismo , Ribonucleoproteínas/metabolismo , Trypanosoma brucei brucei/enzimologia , Motivos de Aminoácidos/fisiologia , Animais , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Estrutura Terciária de Proteína/fisiologia , Proteínas de Protozoários/genética , Edição de RNA/fisiologia , RNA Helicases/genética , Estabilidade de RNA/fisiologia , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Ribonucleoproteínas/genética , Ribossomos/genética , Ribossomos/metabolismo , Trypanosoma brucei brucei/genética
5.
Int J Parasitol ; 36(12): 1295-304, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16860325

RESUMO

Mitochondrial gene expression in kinetoplastids is controlled after transcription, potentially at the levels of RNA maturation, stability and translation. Among these processes, RNA editing by U-insertion/deletion catalysed by multi-subunit editing complexes is best characterised at the molecular level. Nevertheless, mitochondrial RNA metabolism overall remains poorly understood, including the potential regulatory factors that may interact with the relevant catalytic molecular machines and/or RNA substrates. Here we report on a approximately 25kDa polypeptide in mitochondrial extracts that exhibits a preferential "zero-distance" photo-crosslinking interaction with an A6 pre-mRNA model substrate for RNA editing containing a single [(32)P] at the first editing site. The approximately 25kDa polypeptide purified away from editosomes upon ion-exchange chromatography and glycerol gradient sedimentation. Competition assays with homologous and heterologous transcripts suggest that the preferential recognition of the A6 substrate is based on relatively low-specificity RNA-protein contacts. Our mapping and substrate truncation analyses suggest that the crosslinking activity primarily targeted a predicted stem-loop region containing the first editing sites. Consistent with the notion that pre-mRNA folding may be required, pre-annealing with guide RNA abolished crosslinking. Interestingly, this preferential protein interaction with the A6 substrate seemed to require adenosine 5'-triphosphate but not hydrolysis. As in other biological systems, fine regulation in vivo may be brought about by transient networks of relatively low-specificity interactions in which multiple auxiliary factors bind to mRNAs and/or editing complexes in unique higher-order assemblies.


Assuntos
Proteínas de Protozoários/genética , Edição de RNA/genética , Precursores de RNA/genética , RNA de Protozoário/genética , Trypanosoma brucei brucei/genética , Trifosfato de Adenosina/genética , Animais , Sequência de Bases , Reagentes de Ligações Cruzadas , Regulação da Expressão Gênica/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Peso Molecular , Conformação de Ácido Nucleico , RNA/genética , RNA Guia de Cinetoplastídeos/genética , RNA Nuclear Heterogêneo/genética , RNA Mensageiro/genética , RNA Mitocondrial
6.
Nucleic Acids Res ; 33(20): 6610-20, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16306234

RESUMO

Trypanosome RNA editing by uridylate insertion or deletion cycles is a mitochondrial mRNA maturation process catalyzed by multisubunit complexes. A full-round of editing entails three consecutive steps directed by partially complementary guide RNAs: pre-mRNA cleavage, U addition or removal, and ligation. The structural and functional composition of editing complexes is intensively studied, but their molecular interactions in and around editing sites are not completely understood. In this study, we performed a systematic analysis of distal RNA requirements for full-round insertion and deletion by purified editosomes. We define minimal substrates for efficient editing of A6 and CYb model transcripts, and established a new substrate, RPS12. Important differences were observed in the composition of substrates for insertion and deletion. Furthermore, we also showed for the first time that natural sites can be artificially converted in both directions: from deletion to insertion or from insertion to deletion. Our site conversions enabled a direct comparison of the two editing kinds at common sites during substrate minimization and demonstrate that all basic determinants directing the editosome to carry out full-round insertion or deletion reside within each editing site. Surprisingly, we were able to engineer a deletion site into CYb, which exclusively undergoes insertion in nature.


Assuntos
Edição de RNA , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Trypanosoma brucei brucei/genética , Nucleotídeos de Uracila/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Sequência de Bases , Citocromos b/genética , Citocromos b/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Mutagênese , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Trypanosoma brucei brucei/metabolismo
7.
Mol Cell Biol ; 22(13): 4652-60, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12052873

RESUMO

Trypanosome RNA editing is a unique U insertion and U deletion process that involves cycles of pre-mRNA cleavage, terminal U addition or U removal, and religation. This editing can occur at massive levels and is directed by base pairing of trans-acting guide RNAs. Both U insertion and U deletion cycles are catalyzed by a single protein complex that contains only seven major proteins, band I through band VII. However, little is known about their catalytic functions, except that band IV and band V are RNA ligases and genetic analysis indicates that the former is important in U deletion. Here we establish biochemical approaches to distinguish the individual roles of these ligases, based on their distinctive ATP and pyrophosphate utilization. These in vitro analyses revealed that both ligases serve in RNA editing. Band V is the RNA editing ligase that functions very selectively to seal in U insertion (IREL), while band IV is the RNA editing ligase needed to seal in U deletion (DREL). In combination with our earlier findings about the cleavage and the U-addition/U-removal steps of U deletion and U insertion, these results show that all three steps of these editing pathways exhibit major differences and suggest that the editing complex could have physically separate regions for U deletion and U insertion.


Assuntos
Edição de RNA , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/metabolismo , Trypanosoma brucei brucei/genética , Trifosfato de Adenosina/metabolismo , Animais , Carbono-Oxigênio Ligases/genética , Carbono-Oxigênio Ligases/metabolismo , Fracionamento Químico , Mitocôndrias/química , Mitocôndrias/genética , RNA Ligase (ATP)/classificação , Titulometria , Trypanosoma brucei brucei/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA