Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 182: 112595, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321445

RESUMO

Protease inhibitors have been widely used in several therapeutic applications such as in the treatment of bleeding disorders, hypertension, cancer and pulmonary diseases. In a previous work, we demonstrated that a Kunitz-type serine protease inhibitor isolated from the seeds of Caesalpinia echinata (CeEI) exhibits pharmacological potential in lung inflammatory diseases in which neutrophil elastase plays a crucial role. However, an important challenge in the use of natural products is to ensure a commercially viable production. In this work, we report the cloning, expression and purification of two recombinant CeEI isoinhibitors with 700 base pairs encoding two proteins with 181 amino acid residues (rCeEI-4 and rCeEI-5). After the expression, each yielding 22 mg/L of active protein, both isoinhibitors presented a molecular mass of about 23.0 kDa, evaluated by SDS-PAGE. The inhibition constants for human neutrophil elastase (HNE) were 0.67 nM (rCeEI-4) and 0.57 nM (rCeEI-5), i.e., similar to the native inhibitor (1.90 nM). Furthermore, rCeEI-4 was used as a template to design smaller functional peptides flanking the inhibitor reactive site: rCeEI-36, delimited between the amino acid residues N36 and S88 containing a disulfide bond in the reactive-site loop, and rCeEI-46, delimited between S46 and L75 without the disulfide bond. The yields were 18 mg/L (rCeEI-36) and 12 mg/L (rCeEI-46). Both peptides inhibit HNE in the nanomolar range (Ki 0.30 ± 0.01 and 8.80 ± 0.23, respectively). Considering their size and the inhibitory efficiency, these peptides may be considered in strategies for the development of drugs targeting pulmonary disorders where elastase is involved.


Assuntos
Caesalpinia , Bioengenharia , Brasil , Elastase de Leucócito , Sementes , Inibidores de Serina Proteinase/farmacologia , Madeira
2.
Pulm Med ; 2016: 9425807, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28044105

RESUMO

Inflammation is an essential process in many pulmonary diseases in which kinins are generated by protease action on kininogen, a phenomenon that is blocked by protease inhibitors. We evaluated kinin release in an in vivo lung inflammation model in rats, in the presence or absence of CeKI (C. echinata kallikrein inhibitor), a plasma kallikrein, cathepsin G, and proteinase-3 inhibitor, and rCeEI (recombinant C. echinata elastase inhibitor), which inhibits these proteases and also neutrophil elastase. Wistar rats were intravenously treated with buffer (negative control) or inhibitors and, subsequently, lipopolysaccharide was injected into their lungs. Blood, bronchoalveolar lavage fluid (BALF), and lung tissue were collected. In plasma, kinin release was higher in the LPS-treated animals in comparison to CeKI or rCeEI groups. rCeEI-treated animals presented less kinin than CeKI-treated group. Our data suggest that kinins play a pivotal role in lung inflammation and may be generated by different enzymes; however, neutrophil elastase seems to be the most important in the lung tissue context. These results open perspectives for a better understanding of biological process where neutrophil enzymes participate and indicate these plant inhibitors and their recombinant correlates for therapeutic trials involving pulmonary diseases.


Assuntos
Caesalpinia , Neutrófilos , Pneumonia , Animais , Catepsina G/metabolismo , Modelos Animais de Doenças , Cininogênios/metabolismo , Modelos Biológicos , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Compostos Fitoquímicos/farmacologia , Calicreína Plasmática/metabolismo , Pneumonia/tratamento farmacológico , Pneumonia/enzimologia , Inibidores de Proteases/farmacologia , Ratos , Sementes
3.
Phytochemistry ; 96: 235-43, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24140156

RESUMO

Acute lung injury (ALI) is characterized by neutrophil infiltration and the release of proteases, mainly elastase (NE), cathepsin G (Cat G) and proteinase 3 (PR3), which can be controlled by specific endogenous inhibitors. However, inhibitors of these proteases have been isolated from different sources, including plants. For this study, CeEI, or Caesalpinia echinata elastase inhibitor, was purified from C. echinata (Brazil-wood) seeds after acetone fractionation, followed by ion exchange and reversed phase chromatographic steps. Characterization with SDS-PAGE, stability assays, amino acid sequencing and alignment with other protein sequences confirmed that CeEI is a member of the soybean Kunitz trypsin inhibitor family. Like other members of this family, CeEI is a 20 kDa monomeric protein; it is stable within a large pH and temperature range, with four cysteine residues forming two disulfide bridges, conserved amino acid residues and leucine-isoleucine residues in the reactive site. CeEI was able to inhibit NE and Cat G at a nanomolar range (with K(i)s of 1.9 and 3.6 nM, respectively) and inhibited PR3 within a micromolar range (K(i) 3.7 µM), leading to hydrolysis of specific synthetic substrates. In a lung edema model, CeEI reduced the lung weight and pulmonary artery pressure until 180 min after the injection of zymosan-activated polymorphonuclear neutrophils. In experiments performed in the presence of a Cat G and PR3, but not an NE inhibitor, lung edema was reduced only until 150 min and pulmonary artery pressure was similar to that of the control. These results confirm that NE action is crucial to edema establishment and progression. Additionally, CeEI appears to be a useful tool for studying the physiology of pulmonary edema and provides a template for molecular engineering and drug design for ALI therapy.


Assuntos
Caesalpinia/química , Catepsina G/metabolismo , Elastase de Leucócito/metabolismo , Mieloblastina/metabolismo , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/farmacologia , Edema Pulmonar/metabolismo , Inibidores de Serina Proteinase/farmacologia , Sequência de Aminoácidos , Animais , Gatos , Eletroforese em Gel de Poliacrilamida , Inibidores de Proteases/química , Sementes/química , Serina Endopeptidases/metabolismo
4.
Biochimie ; 93(10): 1839-45, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21784122

RESUMO

In the plasma kallikrein-kinin system, it has been shown that when plasma prekallikrein (PK) and high molecular weight kininogen (HK) assemble on endothelial cells, plasma kallikrein (huPK) becomes available to cleave HK, releasing bradykinin, a potent mediator of the inflammatory response. Because the formation of soluble glycosaminoglycans occurs concomitantly during the inflammatory processes, the effect of these polysaccharides on the interaction of HK on the cell surface or extracellular matrix (ECM) of two endothelial cell lines (ECV304 and RAEC) was investigated. In the presence of Zn(+2), HK binding to the surface or ECM of RAEC was abolished by heparin; reduced by heparan sulfate, keratan sulfate, chondroitin 4-sulfate or dermatan sulfate; and not affected by chondroitin 6-sulfate. By contrast, only heparin reduced HK binding to the ECV304 cell surface or ECM. Using heparin-correlated molecules such as low molecular weight dextran sulfate, low molecular weight heparin and N-desulfated heparin, we suggest that these effects were mainly dependent on the charge density and on the N-sulfated glucosamine present in heparin. Surprisingly, PK binding to cell- or ECM-bound-HK and PK activation was not modified by heparin. However, the hydrolysis of HK by huPK, releasing BK in the fluid phase, was augmented by this glycosaminoglycan in the presence of Zn(2+). Thus, a functional dichotomy exists in which soluble glycosaminoglycans may possibly either increase or decrease the formation of BK. In conclusion, glycosaminoglycans that accumulated in inflammatory fluids or used as a therapeutic drug (e.g., heparin) could act as pro- or anti-inflammatory mediators depending on different factors within the cell environment.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Heparina/farmacologia , Pré-Calicreína/metabolismo , Biotinilação/efeitos dos fármacos , Linhagem Celular , Matriz Extracelular/metabolismo , Glicosaminoglicanos/farmacologia , Humanos , Cininogênios , Ligação Proteica/efeitos dos fármacos
5.
Biol Chem ; 387(8): 1129-38, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16895484

RESUMO

The interplay of different proteases and glycosaminoglycans is able to modulate the activity of the enzymes and to affect their structures. Human plasma kallikrein (huPK) is a proteolytic enzyme involved in intrinsic blood clotting, the kallikrein-kinin system and fibrinolysis. We investigated the effect of heparin on the action, inhibition and secondary structure of huPK. The catalytic efficiency for the hydrolysis of substrates by huPK was determined by Michaelis-Menten kinetic plots: 5.12x10(4) M-1 s-1 for acetyl-Phe-Arg-p-nitroanilide, 1.40x10(5) M-1 s-1 for H-D-Pro-Phe-Arg-p-nitroanilide, 2.25x10(4) M-1 s-1 for Abz-Gly-Phe-Ser-Pro-Phe-Arg-Ser-Ser-Arg-Gln-EDDnp, 4.24x10(2)M-1 s-1 for factor XII and 5.58x10(2) M-1 s-1 for plasminogen. Heparin reduced the hydrolysis of synthetic substrates (by 2.0-fold), but enhanced factor XII and plasminogen hydrolysis (7.7- and 1.4-fold, respectively). The second-order rate constants for inhibition of huPK by antithrombin and C1-inhibitor were 2.40x10(2) M-1 s-1 and 1.70x10(4) M-1 s-1, respectively. Heparin improved the inhibition of huPK by these inhibitors (3.4- and 1.4-fold). Despite the fact that huPK was able to bind to a heparin-Sepharose matrix, its secondary structure was not modified by heparin, as monitored by circular dichroism. These actions may have a function in the control or maintenance of some pathophysiological processes in which huPK participates.


Assuntos
Inibidores Enzimáticos/farmacologia , Heparina/farmacologia , Peptídeos/metabolismo , Calicreína Plasmática/antagonistas & inibidores , Calicreína Plasmática/metabolismo , Antitrombinas/farmacologia , Catálise , Proteína Inibidora do Complemento C1/farmacologia , Fator XII/efeitos dos fármacos , Fator XII/metabolismo , Humanos , Hidrólise , Peptídeos/efeitos dos fármacos , Calicreína Plasmática/química , Plasminogênio/efeitos dos fármacos , Plasminogênio/metabolismo , Estrutura Secundária de Proteína , Fatores de Tempo , alfa 1-Antitripsina/farmacologia
6.
Comp Biochem Physiol C Toxicol Pharmacol ; 141(3): 225-40, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16039165

RESUMO

Apoptosis and necrosis are two forms of cell death that can occur in response to various agents and oxidative damage. In addition to necrosis, apoptosis contributes to muscle fiber loss in various muscular dystrophies as well participates in the exudative diathesis in chicken, pathology caused by dietary deficiency of vitamin E and selenium, which affects muscle tissue. We have used chicken skeletal muscle cells and bovine fibroblasts to study molecular events involved in the cell death induced by oxidative stress and apoptotic agents. The effect of vitamin E on cell death induced by oxidants was also investigated. Treatment of cells with anti-Fas antibody (50 to 400 ng/mL), staurosporine (0.1 to 100 microM) and TNF-alpha (10 and 50 ng/mL) resulted in a little loss of Trypan blue exclusion ability. Those stimuli conducted cells to apoptosis detected by an enhancement in caspase activity upon fluorogenic substrates but this activity was not fully blocked by the caspase inhibitor Z-VAD-fmk. Oxidative stress induced by menadione (10, 100 and 250 muM) promoted a significant reduction in cell viability (10%, 20% and 35% for fibroblasts; 20%, 30% and 75% for muscle cells, respectively) and caused an increase in caspase activity and DNA fragmentation. H2O2 also promoted apoptosis verified by caspase activation and DNA fragmentation, but in higher doses induced necrosis. Vitamin E protected cells from death induced by low doses of oxidants. Although it was ineffective in reducing caspase activity in fibroblasts, this vitamin diminished the enzyme activity in muscle cells. These data suggested that oxidative stress could activate apoptotic mechanisms; however the mode of cell death will depend on the intensity and duration of the stimulus, and on the antioxidant status of the cells.


Assuntos
Apoptose/efeitos dos fármacos , Músculo Esquelético/patologia , Estresse Oxidativo , Vitamina E/farmacologia , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Embrião de Galinha , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Necrose/prevenção & controle , Oxidantes/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína X Associada a bcl-2
7.
Biol Chem ; 385(11): 1083-6, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15576329

RESUMO

Caesalpinia echinata is a tree belonging to the Leguminosae family. The red color of the trunk, looking like burning wood ('brasa' in Portuguese), is the origin of the name Brazil. Seeds of leguminous plants contain high amounts of serine proteinase inhibitors that can affect different biological processes. Here we show that a protein isolated from seeds of C. echinata is able to inhibit enzymes that participate in blood coagulation and fibrinolysis. This inhibitor (CeKI) was purified to homogeneity by ion exchange and reversed-phase chromatography. SDS-PAGE indicated a single polypeptide chain with a molecular mass of 20 kDa. CeKI inhibits human plasma kallikrein ( K i =3.1 nM), plasmin ( K i =0.18 nM), factor XIIa ( K i =0.18 nM), trypsin ( K i =21.5 nM) and factor Xa ( K i =0.49 mM). CeKI inhibited kinin release from highmolecular- mass kininogen by kallikrein in vitro . The N-terminal sequence, determined by automatic Edman degradation, identified the inhibitor as a member of the Kunitz family. The secondary structure, determined by circular dichroism, is mainly a random coil followed by beta-sheet structure. The action of CeKI on enzymes of the blood-clotting intrinsic pathway was confirmed by prolongation of the activated partial thromboplastin time.


Assuntos
Caesalpinia/química , Fator XIIa/antagonistas & inibidores , Fibrinolisina/antagonistas & inibidores , Calicreína Plasmática/antagonistas & inibidores , Sementes/química , Inibidores de Serina Proteinase/isolamento & purificação , Sequência de Aminoácidos , Caesalpinia/embriologia , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA