Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Methods Cell Biol ; 185: 115-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556444

RESUMO

Cystic echinococcosis (CE) is a parasitic zoonosis caused by the larval stage of the cestode Echinococcus granulosus sensu lato (s. l.), a genetic complex composed of five species: E. granulosus sensu stricto (s. s.), E. equinus, E. ortleppi, E. canadensis, and E. felidis. The parasite requires two mammalian hosts to complete its life cycle: a definitive host (mainly dogs) harboring the adult parasite in its intestines, and an intermediate host (mostly farm and wild ungulates) where hydatid cysts develop mainly in the liver and lungs. Humans are accidental intermediate hosts, being susceptible to either primary or secondary forms of CE; the first one due to the ingestion of oncospheres, and the second one because of the spillage of protoscoleces (PSC) contained within a primary cyst. Secondary CE is a serious medical problem, and can be modeled in immunocompetent mice (a non-natural intermediate host) through the intraperitoneal inoculation of viable PSC from E. granulosus s. l. This model is useful to study not only the immunobiology of CE, but also to test new chemotherapeutics or therapeutical protocols, to explore novel vaccine candidates, and to evaluate alternative diagnostic and/or follow-up tools. The mouse model of secondary CE involves two sequential stages: an early stage of parasite pre-encystment (PSC develop into hydatid cysts in the peritoneal cavity of mice), and a late or chronic stage of parasite post-encystment (already differentiated cysts slowly grow during the whole host lifespan). This model is a time-consuming infection, whose outcome depends on several factors like the parasite infective dose, the mouse strain, and the parasite species/genotype. Thus, such variables should always be adjusted according to the research objectives. Herein, the general materials and procedures needed to establish secondary CE in mice are described, as well as several useful tips and recommendations.


Assuntos
Equinococose , Echinococcus granulosus , Echinococcus , Adulto , Animais , Humanos , Cães , Camundongos , Equinococose/parasitologia , Equinococose/veterinária , Echinococcus granulosus/genética , Echinococcus/genética , Genótipo , Fígado , Modelos Animais de Doenças , Mamíferos
2.
Methods Cell Biol ; 185: 19-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556448

RESUMO

Taenia solium is the aetiological agent of taeniasis/cysticercosis, one of the most severe neglected tropical diseases (NTD) according to the World Health Organization (WHO). The life cycle of T. solium alternates between pigs (intermediate host) and humans (definitive host). In addition, humans can act as accidental intermediate hosts if they ingest infective eggs. In this case, the most severe condition of the disease occurs when parasites invade the central nervous system, causing neurocysticercosis (NCC). The complexity of the life cycle of T. solium imposes a barrier to study this pathogen thoroughly. Thus, related species, such as T. crassiceps are commonly used. Due to its capacity to multiply asexually, T. crassiceps can be maintained by serial passage in laboratory mice in standard biosecurity level facilities. In addition, an in vitro system to generate cysticerci in the presence of feeder cells has been recently developed. Despite model species display biological differences with their zoonotic counterparts, they have historically helped to understand the biology of the related pathogenic species and hence, generate improvements in NTD detection and control. In this chapter, we describe the procedures to carry out both in vivo and in vitro systems for T. crassiceps in the laboratory.


Assuntos
Cisticercose , Taenia solium , Teníase , Humanos , Camundongos , Animais , Suínos , Cisticercose/veterinária , Taenia solium/fisiologia , Cysticercus/fisiologia
3.
Biology (Basel) ; 12(5)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37237528

RESUMO

Alveolar (AE) and cystic (CE) echinococcosis are two parasitic diseases caused by the tapeworms Echinococcus multilocularis and E. granulosus sensu lato (s. l.), respectively. Currently, AE and CE are mainly diagnosed by means of imaging techniques, serology, and clinical and epidemiological data. However, no viability markers that indicate parasite state during infection are available. Extracellular small RNAs (sRNAs) are short non-coding RNAs that can be secreted by cells through association with extracellular vesicles, proteins, or lipoproteins. Circulating sRNAs can show altered expression in pathological states; hence, they are intensively studied as biomarkers for several diseases. Here, we profiled the sRNA transcriptomes of AE and CE patients to identify novel biomarkers to aid in medical decisions when current diagnostic procedures are inconclusive. For this, endogenous and parasitic sRNAs were analyzed by sRNA sequencing in serum from disease negative, positive, and treated patients and patients harboring a non-parasitic lesion. Consequently, 20 differentially expressed sRNAs associated with AE, CE, and/or non-parasitic lesion were identified. Our results represent an in-depth characterization of the effect E. multilocularis and E. granulosus s. l. exert on the extracellular sRNA landscape in human infections and provide a set of novel candidate biomarkers for both AE and CE detection.

4.
Front Cell Infect Microbiol ; 12: 980817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467728

RESUMO

Extracellular vesicles (EVs) include a heterogeneous group of particles. Microvesicles, apoptotic bodies and exosomes are the most characterized vesicles. They can be distinguished by their size, morphology, origin and molecular composition. To date, increasing studies demonstrate that EVs mediate intercellular communication. EVs reach considerable interest in the scientific community due to their role in diverse processes including antigen-presentation, stimulation of anti-tumoral immune responses, tolerogenic or inflammatory effects. In pathogens, EV shedding is well described in fungi, bacteria, protozoan and helminths parasites. For Trypanosoma cruzi EV liberation and protein composition was previously described. Dendritic cells (DCs), among other cells, are key players promoting the immune response against pathogens and also maintaining self-tolerance. In previous reports we have demonstrate that T. cruzi downregulates DCs immunogenicity in vitro and in vivo. Here we analyze EVs from the in vitro interaction between blood circulating trypomastigotes (Tp) and bone-marrow-derived DCs. We found that Tp incremented the number and the size of EVs in cultures with DCs. EVs displayed some exosome markers and intracellular RNA. Protein analysis demonstrated that the parasite changes the DC protein-EV profile. We observed that EVs from the interaction of Tp-DCs were easily captured by unstimulated-DCs in comparison with EVs from DCs cultured without the parasite, and also modified the activation status of LPS-stimulated DCs. Noteworthy, we found protection in animals treated with EVs-DCs+Tp and challenged with T. cruzi lethal infection. Our goal is to go deep into the molecular characterization of EVs from the DCs-Tp interaction, in order to identify mediators for therapeutic purposes.


Assuntos
Doença de Chagas , Exossomos , Vesículas Extracelulares , Trypanosoma cruzi , Animais , Comunicação Celular , Doença de Chagas/terapia
5.
Parasitology ; 149(13): 1775-1780, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36165285

RESUMO

Taenia solium is the aetiological agent of cysticercosis, a zoonosis that causes severe health and economic losses across Latin America, Africa and Asia. The most serious manifestation of the disease is neurocysticercosis, which occurs when the larval stage (cysticercus) establishes in the central nervous system. Using Taenia crassiceps as an experimental model organism for the study of cysticercosis, we aimed to identify the in vitro conditions necessary to allow parasite development at the short- and long terms. First, cysticerci were incubated for 15 days in different media and parasite densities. The number of buddings and cysticerci diameter were measured to evaluate asexual multiplication and parasite growth, respectively. Vitality was determined by trypan blue staining and morphology analysis. As a result, high cysticerci density and medium containing FBS and the excretion/secretion (E/S) products of feeder cells induced parasite survival, growth and multiplication. Then, the long-term (5 weeks) incubation of the parasites in co-culture with feeder cells was evaluated. Consequently, the mammalian cell lines induced a significant increase in total parasite volume while axenic cultures did not show any statistically significant change over time. In this study, the proper conditions to maintain T. crassiceps in vitro are described for the first time in a simpler and more controlled setting other than experimental infections. In addition, it was shown that cysticerci growth, survival and asexual multiplication depend on a complex network of secreted factors from both parasite and host.


Assuntos
Cisticercose , Neurocisticercose , Parasitos , Taenia solium , Taenia , Animais , Humanos , Camundongos , Cysticercus/fisiologia , Cisticercose/veterinária , Camundongos Endogâmicos BALB C , Mamíferos
6.
Int J Parasitol ; 51(12): 989-997, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34216624

RESUMO

Cystic echinococcosis is a globally distributed zoonosis caused by cestodes of the Echinococcus granulosus sensu lato (s.l.) complex, with Echinococcus ortleppi mainly involved in cattle infection. Protoscoleces show high developmental plasticity, being able to differentiate into either adult worms or metacestodes within definitive or intermediate hosts, respectively. Their outermost cellular layer is called the tegument, which is important in determining the infection outcome through its immunomodulating activities. Herein, we report an in-depth characterization of the tegument of E. ortleppi protoscoleces performed through a combination of scanning and transmission electron microscopy techniques. Using electron tomography, a three-dimensional reconstruction of the tegumental cellular territories was obtained, revealing a novel structure termed the 'tegumental vesicular body' (TVB). Vesicle-like structures, possibly involved in endocytic/exocytic routes, were found within the TVB as well as in the parasite glycocalyx, distal cytoplasm and close inner structures. Furthermore, parasite antigens (GST-1 and AgB) were unevenly localised within tegumental structures, with both being detected in vesicles found within the TBV. Finally, the presence of host (bovine) IgG was also assessed, suggesting a possible endocytic route in protoscoleces. Our data forms the basis for a better understanding of E. ortleppi and E. granulosus s.l. structural biology.


Assuntos
Doenças dos Bovinos , Equinococose , Echinococcus granulosus , Echinococcus , Animais , Bovinos , Equinococose/veterinária , Microscopia Eletrônica de Transmissão
7.
PLoS Negl Trop Dis ; 15(3): e0009297, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33750964

RESUMO

The neglected zoonotic disease alveolar echinococcosis (AE) is caused by the metacestode stage of the tapeworm parasite Echinococcus multilocularis. MicroRNAs (miRNAs) are small non-coding RNAs with a major role in regulating gene expression in key biological processes. We analyzed the expression profile of E. multilocularis miRNAs throughout metacestode development in vitro, determined the spatial expression of miR-71 in metacestodes cultured in vitro and predicted miRNA targets. Small cDNA libraries from different samples of E. multilocularis were sequenced. We confirmed the expression of 37 miRNAs in E. multilocularis being some of them absent in the host, such as miR-71. We found a few miRNAs highly expressed in all life cycle stages and conditions analyzed, whereas most miRNAs showed very low expression. The most expressed miRNAs were miR-71, miR-9, let-7, miR-10, miR-4989 and miR-1. The high expression of these miRNAs was conserved in other tapeworms, suggesting essential roles in development, survival, or host-parasite interaction. We found highly regulated miRNAs during the different transitions or cultured conditions analyzed, which might suggest a role in the regulation of developmental timing, host-parasite interaction, and/or in maintaining the unique developmental features of each developmental stage or condition. We determined that miR-71 is expressed in germinative cells and in other cell types of the germinal layer in E. multilocularis metacestodes cultured in vitro. MiRNA target prediction of the most highly expressed miRNAs and in silico functional analysis suggested conserved and essential roles for these miRNAs in parasite biology. We found relevant targets potentially involved in development, cell growth and death, lifespan regulation, transcription, signal transduction and cell motility. The evolutionary conservation and expression analyses of E. multilocularis miRNAs throughout metacestode development along with the in silico functional analyses of their predicted targets might help to identify selective therapeutic targets for treatment and control of AE.


Assuntos
Echinococcus multilocularis/crescimento & desenvolvimento , Echinococcus multilocularis/genética , Regulação da Expressão Gênica/genética , MicroRNAs/genética , Animais , Sequência de Bases , Proliferação de Células/genética , Equinococose/tratamento farmacológico , Equinococose/parasitologia , Echinococcus multilocularis/efeitos dos fármacos , Interações Hospedeiro-Parasita/genética , Humanos , MicroRNAs/análise , MicroRNAs/efeitos dos fármacos , Família Multigênica/genética , Análise de Sequência de RNA
8.
PLoS Negl Trop Dis ; 12(11): e0006891, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500820

RESUMO

BACKGROUND: Scavenger Receptors (SRs) from the host's innate immune system are known to bind multiple ligands to promote the removal of non-self or altered-self targets. CD5 and CD6 are two highly homologous class I SRs mainly expressed on all T cells and the B1a cell subset, and involved in the fine tuning of activation and differentiation signals delivered by the antigen-specific receptors (TCR and BCR, respectively), to which they physically associate. Additionally, CD5 and CD6 have been shown to interact with and sense the presence of conserved pathogen-associated structures from bacteria, fungi and/or viruses. METHODOLOGY/PRINCIPAL FINDINGS: We report herein the interaction of CD5 and CD6 lymphocyte surface receptors with Echinococcus granulosus sensu lato (s.l.). Binding studies show that both soluble and membrane-bound forms of CD5 and CD6 bind to intact viable protoscoleces from E. granulosus s.l. through recognition of metaperiodate-resistant tegumental components. Proteomic analyses allowed identification of thioredoxin peroxidase for CD5, and peptidyl-prolyl cis-trans isomerase (cyclophilin) and endophilin B1 (antigen P-29) for CD6, as their potential interactors. Further in vitro assays demonstrate that membrane-bound or soluble CD5 and CD6 forms differentially modulate the pro- and anti-inflammatory cytokine release induced following peritoneal cells exposure to E. granulosus s.l. tegumental components. Importantly, prophylactic infusion of soluble CD5 or CD6 significantly ameliorated the infection outcome in the mouse model of secondary cystic echinococcosis. CONCLUSIONS/SIGNIFICANCE: Taken together, the results expand the pathogen binding properties of CD5 and CD6 and provide novel evidence for their therapeutic potential in human cystic echinococcosis.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos CD5/metabolismo , Equinococose/metabolismo , Echinococcus granulosus/metabolismo , Proteínas de Helminto/metabolismo , Receptores Depuradores/metabolismo , Animais , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos CD5/genética , Equinococose/genética , Equinococose/parasitologia , Echinococcus granulosus/genética , Feminino , Proteínas de Helminto/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteômica , Receptores Depuradores/genética , Linfócitos T/metabolismo , Linfócitos T/parasitologia
9.
Int J Parasitol ; 47(10-11): 643-653, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28526608

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that have emerged as important regulators of gene expression and perform critical functions in development and disease. In spite of the increased interest in miRNAs from helminth parasites, no information is available on miRNAs from Taenia solium, the causative agent of cysticercosis, a neglected disease affecting millions of people worldwide. Here we performed a comprehensive analysis of miRNAs from Taenia crassiceps, a laboratory model for T. solium studies, and identified miRNAs in the T. solium genome. Moreover, we analysed the effect of praziquantel, one of the two main drugs used for cysticercosis treatment, on the miRNA expression profile of T. crassiceps cysticerci. Using small RNA-seq and two independent algorithms for miRNA prediction, as well as northern blot validation, we found transcriptional evidence of 39 miRNA loci in T. crassiceps. Since miRNAs were mapped to the T. solium genome, these miRNAs are considered common to both parasites. The miRNA expression profile of T. crassiceps was biased to the same set of highly expressed miRNAs reported in other cestodes. We found a significant altered expression of miR-7b under praziquantel treatment. In addition, we searched for miRNAs predicted to target genes related to drug response. We performed a detailed target prediction for miR-7b and found genes related to drug action. We report an initial approach to study the effect of sub-lethal drug treatment on miRNA expression in a cestode parasite, which provides a platform for further studies of miRNA involvement in drug effects. The results of our work could be applied to drug development and provide basic knowledge of cysticercosis and other neglected helminth infections.


Assuntos
MicroRNAs/genética , Praziquantel/farmacologia , RNA de Helmintos/genética , Taenia/genética , Animais , Anti-Helmínticos/farmacologia , Regulação da Expressão Gênica/fisiologia
10.
BMC Genomics ; 18(1): 204, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28241794

RESUMO

BACKGROUND: The parasite Echinococcus canadensis (G7) (phylum Platyhelminthes, class Cestoda) is one of the causative agents of echinococcosis. Echinococcosis is a worldwide chronic zoonosis affecting humans as well as domestic and wild mammals, which has been reported as a prioritized neglected disease by the World Health Organisation. No genomic data, comparative genomic analyses or efficient therapeutic and diagnostic tools are available for this severe disease. The information presented in this study will help to understand the peculiar biological characters and to design species-specific control tools. RESULTS: We sequenced, assembled and annotated the 115-Mb genome of E. canadensis (G7). Comparative genomic analyses using whole genome data of three Echinococcus species not only confirmed the status of E. canadensis (G7) as a separate species but also demonstrated a high nucleotide sequences divergence in relation to E. granulosus (G1). The E. canadensis (G7) genome contains 11,449 genes with a core set of 881 orthologs shared among five cestode species. Comparative genomics revealed that there are more single nucleotide polymorphisms (SNPs) between E. canadensis (G7) and E. granulosus (G1) than between E. canadensis (G7) and E. multilocularis. This result was unexpected since E. canadensis (G7) and E. granulosus (G1) were considered to belong to the species complex E. granulosus sensu lato. We described SNPs in known drug targets and metabolism genes in the E. canadensis (G7) genome. Regarding gene regulation, we analysed three particular features: CpG island distribution along the three Echinococcus genomes, DNA methylation system and small RNA pathway. The results suggest the occurrence of yet unknown gene regulation mechanisms in Echinococcus. CONCLUSIONS: This is the first work that addresses Echinococcus comparative genomics. The resources presented here will promote the study of mechanisms of parasite development as well as new tools for drug discovery. The availability of a high-quality genome assembly is critical for fully exploring the biology of a pathogenic organism. The E. canadensis (G7) genome presented in this study provides a unique opportunity to address the genetic diversity among the genus Echinococcus and its particular developmental features. At present, there is no unequivocal taxonomic classification of Echinococcus species; however, the genome-wide SNPs analysis performed here revealed the phylogenetic distance among these three Echinococcus species. Additional cestode genomes need to be sequenced to be able to resolve their phylogeny.


Assuntos
Equinococose/genética , Echinococcus/genética , Genoma de Protozoário , Animais , Proteínas Argonautas/antagonistas & inibidores , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Hibridização Genômica Comparativa , Mapeamento de Sequências Contíguas , Ilhas de CpG , Metilação de DNA , Equinococose/parasitologia , Equinococose/patologia , Echinococcus/classificação , Echinococcus/metabolismo , Humanos , Sequências Repetitivas Dispersas/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
11.
Parasitol Int ; 66(3): 250-257, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28193534

RESUMO

The aim of this work was to determine Echinococcus granulosus sensu lato species and genotypes in intermediate and definitive hosts and in human isolates from endemic regions of Argentina and Brazil including those where no molecular data is available by a combination of classical and alternative molecular tools. A total of 227 samples were isolated from humans, natural intermediate and definitive hosts. Amplification of cytochrome c oxidase subunit I gene fragment was performed and a combination of AluI digestion assay, High Resolution Melting analysis (HRM) assay and DNA sequencing was implemented for Echinococcus species/genotype determination. E. granulosus sensu stricto (G1) was found in sheep (n=35), cattle (n=67) and dogs (n=5); E. ortleppi (G5) in humans (n=3) and cattle (n=108); E. canadensis (G6) in humans (n=2) and E. canadensis (G7) in pigs (n=7). We reported for the first time the presence of E. ortleppi (G5) and E. canadensis (G6) in humans from San Juan and Catamarca Argentinean provinces and E. canadensis (G7) in pigs from Cordoba Argentinean province. In this work, we widened molecular epidemiology studies of E. granulosus s. l. in South America by analyzing several isolates from definitive and intermediate hosts, including humans from endemic regions were such information was scarce or unavailable. The presence of different species/genotypes in the same region and host species reinforce the need of rapid and specific techniques for accurate determination of Echinococcus species such as the ones proposed in this work.


Assuntos
Equinococose/epidemiologia , Echinococcus granulosus/genética , Echinococcus/isolamento & purificação , Animais , Argentina/epidemiologia , Brasil/epidemiologia , Bovinos/parasitologia , DNA de Helmintos/genética , Cães/parasitologia , Equinococose/parasitologia , Equinococose/veterinária , Echinococcus/classificação , Echinococcus/genética , Echinococcus granulosus/isolamento & purificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genótipo , Humanos , Epidemiologia Molecular/métodos , Análise de Sequência de DNA , Ovinos/parasitologia , Suínos/parasitologia , Temperatura de Transição
12.
PLoS Negl Trop Dis ; 11(1): e0005250, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28045899

RESUMO

The larva of cestodes belonging to the Echinococcus granulosus sensu lato (s.l.) complex causes cystic echinococcosis (CE). It is a globally distributed zoonosis with significant economic and public health impact. The most immunogenic and specific Echinococcus-genus antigen for human CE diagnosis is antigen B (AgB), an abundant lipoprotein of the hydatid cyst fluid (HF). The AgB protein moiety (apolipoprotein) is encoded by five genes (AgB1-AgB5), which generate mature 8 kDa proteins (AgB8/1-AgB8/5). These genes seem to be differentially expressed among Echinococcus species. Since AgB immunogenicity lies on its protein moiety, differences in AgB expression within E. granulosus s.l. complex might have diagnostic and epidemiological relevance for discriminating the contribution of distinct species to human CE. Interestingly, AgB2 was proposed as a pseudogene in E. canadensis, which is the second most common cause of human CE, but proteomic studies for verifying it have not been performed yet. Herein, we analysed the protein and lipid composition of AgB obtained from fertile HF of swine origin (E. canadensis G7 genotype). AgB apolipoproteins were identified and quantified using mass spectrometry tools. Results showed that AgB8/1 was the major protein component, representing 71% of total AgB apolipoproteins, followed by AgB8/4 (15.5%), AgB8/3 (13.2%) and AgB8/5 (0.3%). AgB8/2 was not detected. As a methodological control, a parallel analysis detected all AgB apolipoproteins in bovine fertile HF (G1/3/5 genotypes). Overall, E. canadensis AgB comprised mostly AgB8/1 together with a heterogeneous mixture of lipids, and AgB8/2 was not detected despite using high sensitivity proteomic techniques. This endorses genomic data supporting that AgB2 behaves as a pseudogene in G7 genotype. Since recombinant AgB8/2 has been found to be diagnostically valuable for human CE, our findings indicate that its use as antigen in immunoassays could contribute to false negative results in areas where E. canadensis circulates. Furthermore, the presence of anti-AgB8/2 antibodies in serum may represent a useful parameter to rule out E. canadensis infection when human CE is diagnosed.


Assuntos
Equinococose/veterinária , Echinococcus/química , Proteínas de Helminto/química , Lipoproteínas/química , Doenças dos Suínos/parasitologia , Animais , Equinococose/parasitologia , Echinococcus/genética , Echinococcus/imunologia , Echinococcus/isolamento & purificação , Eletroforese em Gel Bidimensional , Genótipo , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Lipoproteínas/genética , Lipoproteínas/imunologia , Espectrometria de Massas , Proteômica , Suínos
13.
Immunobiology ; 221(1): 103-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26238549

RESUMO

Antibodies are key immune players in several helminth infections and animal models have been central for the identification of their mechanisms of protection. Murine secondary cystic echinococcosis is a useful model for studying Echinococcus granulosus immunobiology, being the immune profile mounted by the experimental host a determinant of parasite success or failure in infection establishment. In the present study, we analyzed infection outcome using Balb/c and C57Bl/6 mice strains, and compared their antibody responses in terms of quality and intensity. Our results showed that Balb/c is a highly susceptible strain to secondary cystic echinococcosis, while C57Bl/6 mice are quite resistant. Moreover, significant differences between strains were observed in natural and induced antibodies recognizing E. granulosus antigens, both at the systemic and peritoneal levels. Natural cross-reacting IgM, IgG2b and IgG3 antibodies were detected in sera from both strains but with different intensities, and - remarkably - natural IgG2b showed to be an intrinsic correlate of protection in both mice strains. Interestingly, naïve C57Bl/6 serum displayed a higher protoscolicidal activity, and heterologous - but not homologous - transference of C57Bl/6 naïve serum into Balb/c mice, significantly reduced their infection susceptibility. In the peritoneal cavity, different levels of natural cross-reacting IgM and IgG3 antibodies were detected in both mice strains, while cross-reacting IgG2b was detected only in C57Bl/6 mice. On the other hand, infected mice from both strains developed isotype-mixed antibody responses, with Balb/c mice biasing their response towards high avidity IgG1 and C57Bl/6 mice showing a predominance of mixed IgM/IgG2c/IgG2b/IgG3. In this regard, IgG1 levels showed to be a correlate of susceptibility in both mice strains. In conclusion, our results suggest that antibodies - either natural or induced - play a role in the susceptibility degree to murine secondary cystic echinococcosis.


Assuntos
Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/imunologia , Suscetibilidade a Doenças/imunologia , Equinococose/imunologia , Echinococcus granulosus/imunologia , Imunidade Humoral , Transferência Adotiva , Animais , Antígenos de Helmintos/sangue , Reações Cruzadas , Equinococose/parasitologia , Feminino , Especificidade de Hospedeiro , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
14.
Trop Med Int Health ; 21(2): 166-75, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26610060

RESUMO

OBJECTIVE: To systematically review publications on Echinococcus granulosus sensu lato species/genotypes reported in domestic intermediate and definitive hosts in South America and in human cases worldwide, taking into account those articles where DNA sequencing was performed; and to analyse the density of each type of livestock that can act as intermediate host, and features of medical importance such as cyst organ location. METHODS: Literature search in numerous databases. We included only articles where samples were genotyped by sequencing since to date it is the most accurate method to unambiguously identify all E. granulosus s. l. genotypes. Also, we report new E. granulosus s. l. samples from Argentina and Uruguay analysed by sequencing of cox1 gene. RESULTS: In South America, five countries have cystic echinococcosis cases for which sequencing data are available: Argentina, Brazil, Chile, Peru and Uruguay, adding up 1534 cases. E. granulosus s. s. (G1) accounts for most of the global burden of human and livestock cases. Also, E. canadensis (G6) plays a significant role in human cystic echinococcosis. Likewise, worldwide analysis of human cases showed that 72.9% are caused by E. granulosus s. s. (G1) and 12.2% and 9.6% by E. canadensis G6 and G7, respectively. CONCLUSIONS: E. granulosus s. s. (G1) accounts for most of the global burden followed by E. canadensis (G6 and G7) in South America and worldwide. This information should be taken into account to suit local cystic echinococcosis control and prevention programmes according to each molecular epidemiological situation.


Assuntos
Equinococose/parasitologia , Echinococcus granulosus/genética , Genótipo , Gado/parasitologia , Animais , Equinococose/veterinária , Echinococcus , Humanos , América do Sul
15.
Parasit Vectors ; 8: 83, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25656283

RESUMO

BACKGROUND: microRNAs (miRNAs), a class of small non-coding RNAs, are key regulators of gene expression at post-transcriptional level and play essential roles in fundamental biological processes such as development and metabolism. The particular developmental and metabolic characteristics of cestode parasites highlight the importance of studying miRNA gene regulation in these organisms. Here, we perform a comprehensive analysis of miRNAs in the parasitic cestode Echinococcus canadensis G7, one of the causative agents of the neglected zoonotic disease cystic echinococcosis. METHODS: Small RNA libraries from protoscoleces and cyst walls of E. canadensis G7 and protoscoleces of E. granulosus sensu stricto G1 were sequenced using Illumina technology. For miRNA prediction, miRDeep2 core algorithm was used. The output list of candidate precursors was manually curated to generate a high confidence set of miRNAs. Differential expression analysis of miRNAs between stages or species was estimated with DESeq. Expression levels of selected miRNAs were validated using poly-A RT-qPCR. RESULTS: In this study we used a high-throughput approach and found transcriptional evidence of 37 miRNAs thus expanding the miRNA repertoire of E. canadensis G7. Differential expression analysis showed highly regulated miRNAs between life cycle stages, suggesting a role in maintaining the features of each developmental stage or in the regulation of developmental timing. In this work we characterize conserved and novel Echinococcus miRNAs which represent 30 unique miRNA families. Here we confirmed the remarkable loss of conserved miRNA families in E. canadensis, reflecting their low morphological complexity and high adaptation to parasitism. CONCLUSIONS: We performed the first in-depth study profiling of small RNAs in the zoonotic parasite E. canadensis G7. We found that miRNAs are the preponderant small RNA silencing molecules, suggesting that these small RNAs could be an essential mechanism of gene regulation in this species. We also identified both parasite specific and divergent miRNAs which are potential biomarkers of infection. This study will provide valuable information for better understanding of the complex biology of this parasite and could help to find new potential targets for therapy and/or diagnosis.


Assuntos
Equinococose/veterinária , Echinococcus/genética , MicroRNAs/genética , RNA de Helmintos/genética , Doenças dos Ovinos/parasitologia , Doenças dos Suínos/parasitologia , Animais , Sequência de Bases , Equinococose/parasitologia , Echinococcus/isolamento & purificação , Echinococcus/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/metabolismo , Dados de Sequência Molecular , RNA de Helmintos/metabolismo , Análise de Sequência de RNA , Ovinos , Suínos
16.
Rev Argent Microbiol ; 45(3): 169-73, 2013.
Artigo em Espanhol | MEDLINE | ID: mdl-24165140

RESUMO

We report the first finding of Echinococcus vogeli in a paca, Cuniculus paca, in the tropical forest of Misiones, in the north of Argentina. The presence of the bush dog, Speothos venaticus, E. vogelís only natural definitive host, was also reported. The polycystic hydatids, 2 to 3 cm in diameter, were only found in the liver of an adult paca. The size range of the hooks and the relative proportion blade/handle did not show significant differences with respect to the ones reported for E. vogeli. The size of E. granulosus hooks, measured for comparison purposes, was significantly smaller (p E. vogeli in Argentina. The probability of finding neotropical echinococcosis in humans reinforces the need to expand the search for E. vogeli in Argentina. Echinococcosis due to E. vogeli is very aggressive and may cause death in about a third of the human population affected.


Assuntos
Equinococose/veterinária , Echinococcus/isolamento & purificação , Fígado/parasitologia , Roedores/parasitologia , Animais , Argentina
17.
Rev. argent. microbiol ; 45(3): 169-73, set. 2013.
Artigo em Espanhol | LILACS, BINACIS | ID: biblio-1171788

RESUMO

We report the first finding of Echinococcus vogeli in a paca, Cuniculus paca, in the tropical forest of Misiones, in the north of Argentina. The presence of the bush dog, Speothos venaticus, E. vogelís only natural definitive host, was also reported. The polycystic hydatids, 2 to 3 cm in diameter, were only found in the liver of an adult paca. The size range of the hooks and the relative proportion blade/handle did not show significant differences with respect to the ones reported for E. vogeli. The size of E. granulosus hooks, measured for comparison purposes, was significantly smaller (p E. vogeli in Argentina. The probability of finding neotropical echinococcosis in humans reinforces the need to expand the search for E. vogeli in Argentina. Echinococcosis due to E. vogeli is very aggressive and may cause death in about a third of the human population affected.


Assuntos
Echinococcus/isolamento & purificação , Equinococose/veterinária , Fígado/parasitologia , Roedores/parasitologia , Animais , Argentina
18.
PLoS Negl Trop Dis ; 7(1): e2017, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23350011

RESUMO

Echinococcus granulosus is characterized by high intra-specific variability (genotypes G1-G10) and according to the new molecular phylogeny of the genus Echinococcus, the E. granulosus complex has been divided into E. granulosus sensu stricto (G1-G3), E. equinus (G4), E. ortleppi (G5), and E. canadensis (G6-G10). The molecular characterization of E. granulosus isolates is fundamental to understand the spatio-temporal epidemiology of this complex in many endemic areas with the simultaneous occurrence of different Echinococcus species and genotypes. To simplify the genotyping of the E. granulosus complex we developed a single-tube multiplex PCR (mPCR) allowing three levels of discrimination: (i) Echinococcus genus, (ii) E. granulosus complex in common, and (iii) the specific genotype within the E. granulosus complex. The methodology was established with known DNA samples of the different strains/genotypes, confirmed on 42 already genotyped samples (Spain: 22 and Bulgaria: 20) and then successfully applied on 153 unknown samples (Tunisia: 114, Algeria: 26 and Argentina: 13). The sensitivity threshold of the mPCR was found to be 5 ng Echinoccoccus DNA in a mixture of up to 1 µg of foreign DNA and the specificity was 100% when template DNA from closely related members of the genus Taenia was used. Additionally to DNA samples, the mPCR can be carried out directly on boiled hydatid fluid or on alkaline-lysed frozen or fixed protoscoleces, thus avoiding classical DNA extractions. However, when using Echinococcus eggs obtained from fecal samples of infected dogs, the sensitivity of the mPCR was low (<40%). Thus, except for copro analysis, the mPCR described here has a high potential for a worldwide application in large-scale molecular epidemiological studies on the Echinococcus genus.


Assuntos
Equinococose/epidemiologia , Equinococose/veterinária , Echinococcus granulosus/classificação , Echinococcus granulosus/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Parasitologia/métodos , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Cães , Equinococose/parasitologia , Echinococcus granulosus/genética , Humanos , Epidemiologia Molecular/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA