Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
ACS Med Chem Lett ; 14(11): 1567-1575, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37974945

RESUMO

N-Heterocyclic carbene (NHC) metal complexes are attracting scientists' interest as an alluring class of metallodrugs. Indeed, the versatile functionalization of NHC ligands makes them optimal scaffolds to be developed in medicinal chemistry. Besides, amino acids are great biological ligands for metals, such as silver and gold, even though their use is still under-investigated. Aiming to shed light on the anticancer properties of this kind of complex, we investigated a series of silver and gold complexes, stabilized by NHC ligands and bearing carboxylate salts of tert-butyloxycarbonyl (Boc)-N-protected glycine and l-phenylalanine as anionic ligands. The most active complexes, AuM1Gly and AuM1Phe, powerfully affect the growth of MDA-MB-231 breast cancer cells, with IC50 values in the low nanomolar range. Further studies demonstrated the blockade of the human topoisomerase I activity and actin polymerization reaction at 0.001 µM. These unique features make these complexes very interesting and worthy to be used for future in vivo studies.

2.
Clin Proteomics ; 20(1): 52, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990292

RESUMO

BACKGROUND: Prostate Cancer (PCa) represents the second leading cause of cancer-related death in men. Prostate-specific antigen (PSA) serum testing, currently used for PCa screening, lacks the necessary sensitivity and specificity. New non-invasive diagnostic tools able to discriminate tumoral from benign conditions and aggressive (AG-PCa) from indolent forms of PCa (NAG-PCa) are required to avoid unnecessary biopsies. METHODS: In this work, 32 formerly N-glycosylated peptides were quantified by PRM (parallel reaction monitoring) in 163 serum samples (79 from PCa patients and 84 from individuals affected by benign prostatic hyperplasia (BPH)) in two technical replicates. These potential biomarker candidates were prioritized through a multi-stage biomarker discovery pipeline articulated in: discovery, LC-PRM assay development and verification phases. Because of the well-established involvement of glycoproteins in cancer development and progression, the proteomic analysis was focused on glycoproteins enriched by TiO2 (titanium dioxide) strategy. RESULTS: Machine learning algorithms have been applied to the combined matrix comprising proteomic and clinical variables, resulting in a predictive model based on six proteomic variables (RNASE1, LAMP2, LUM, MASP1, NCAM1, GPLD1) and five clinical variables (prostate dimension, proPSA, free-PSA, total-PSA, free/total-PSA) able to distinguish PCa from BPH with an area under the Receiver Operating Characteristic (ROC) curve of 0.93. This model outperformed PSA alone which, on the same sample set, was able to discriminate PCa from BPH with an AUC of 0.79. To improve the clinical managing of PCa patients, an explorative small-scale analysis (79 samples) aimed at distinguishing AG-PCa from NAG-PCa was conducted. A predictor of PCa aggressiveness based on the combination of 7 proteomic variables (FCN3, LGALS3BP, AZU1, C6, LAMB1, CHL1, POSTN) and proPSA was developed (AUC of 0.69). CONCLUSIONS: To address the impelling need of more sensitive and specific serum diagnostic tests, a predictive model combining proteomic and clinical variables was developed. A preliminary evaluation to build a new tool able to discriminate aggressive presentations of PCa from tumors with benign behavior was exploited. This predictor displayed moderate performances, but no conclusions can be drawn due to the limited number of the sample cohort. Data are available via ProteomeXchange with identifier PXD035935.

3.
J Exp Clin Cancer Res ; 42(1): 69, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36945054

RESUMO

BACKGROUND: Metastases are the major cause of cancer-related morbidity and mortality. By the time cancer cells detach from their primary site to eventually spread to distant sites, they need to acquire the ability to survive in non-adherent conditions and to proliferate within a new microenvironment in spite of stressing conditions that may severely constrain the metastatic process. In this study, we gained insight into the molecular mechanisms allowing cancer cells to survive and proliferate in an anchorage-independent manner, regardless of both tumor-intrinsic variables and nutrient culture conditions. METHODS: 3D spheroids derived from lung adenocarcinoma (LUAD) and breast cancer cells were cultured in either nutrient-rich or -restricted culture conditions. A multi-omics approach, including transcriptomics, proteomics, and metabolomics, was used to explore the molecular changes underlying the transition from 2 to 3D cultures. Small interfering RNA-mediated loss of function assays were used to validate the role of the identified differentially expressed genes and proteins in H460 and HCC827 LUAD as well as in MCF7 and T47D breast cancer cell lines. RESULTS: We found that the transition from 2 to 3D cultures of H460 and MCF7 cells is associated with significant changes in the expression of genes and proteins involved in metabolic reprogramming. In particular, we observed that 3D tumor spheroid growth implies the overexpression of ALDOC and ENO2 glycolytic enzymes concomitant with the enhanced consumption of glucose and fructose and the enhanced production of lactate. Transfection with siRNA against both ALDOC and ENO2 determined a significant reduction in lactate production, viability and size of 3D tumor spheroids produced by H460, HCC827, MCF7, and T47D cell lines. CONCLUSIONS: Our results show that anchorage-independent survival and growth of cancer cells are supported by changes in genes and proteins that drive glucose metabolism towards an enhanced lactate production. Notably, this finding is valid for all lung and breast cancer cell lines we have analyzed in different nutrient environmental conditions. broader Validation of this mechanism in other cancer cells of different origin will be necessary to broaden the role of ALDOC and ENO2 to other tumor types. Future in vivo studies will be necessary to assess the role of ALDOC and ENO2 in cancer metastasis.


Assuntos
Neoplasias da Mama , Multiômica , Feminino , Humanos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Glucose , Lactatos , Nutrientes , Esferoides Celulares , Microambiente Tumoral
4.
ACS Omega ; 8(7): 6244-6252, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844540

RESUMO

Prostate cancer (PCa) is annually the most frequently diagnosed cancer in the male population. To date, the diagnostic path for PCa detection includes the dosage of serum prostate-specific antigen (PSA) and the digital rectal exam (DRE). However, PSA-based screening has insufficient specificity and sensitivity; besides, it cannot discriminate between the aggressive and indolent types of PCa. For this reason, the improvement of new clinical approaches and the discovery of new biomarkers are necessary. In this work, expressed prostatic secretion (EPS)-urine samples from PCa patients and benign prostatic hyperplasia (BPH) patients were analyzed with the aim of detecting differentially expressed proteins between the two analyzed groups. To map the urinary proteome, EPS-urine samples were analyzed by data-independent acquisition (DIA), a high-sensitivity method particularly suitable for detecting proteins at low abundance. Overall, in our analysis, 2615 proteins were identified in 133 EPS-urine specimens obtaining the highest proteomic coverage for this type of sample; of these 2615 proteins, 1670 were consistently identified across the entire data set. The matrix containing the quantified proteins in each patient was integrated with clinical parameters such as the PSA level and gland size, and the complete matrix was analyzed by machine learning algorithms (by exploiting 90% of samples for training/testing using a 10-fold cross-validation approach, and 10% of samples for validation). The best predictive model was based on the following components: semaphorin-7A (sema7A), secreted protein acidic and rich in cysteine (SPARC), FT ratio, and prostate gland size. The classifier could predict disease conditions (BPH, PCa) correctly in 83% of samples in the validation set. Data are available via ProteomeXchange with the identifier PXD035942.

5.
Theranostics ; 12(17): 7420-7430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438490

RESUMO

Rationale: Metastatic melanoma is the most aggressive and dangerous form of skin cancer. The introduction of immunotherapy with Immune checkpoint Inhibitors (ICI) and of targeted therapy with BRAF and MEK inhibitors for BRAF mutated melanoma, has greatly improved the clinical outcome of these patients. Nevertheless, response to therapy remains highly variable and the development of drug resistance continues to be a daunting challenge. Within this context there is a need to develop diagnostic tools capable of predicting response or resistance to therapy in order to select the best therapeutic approach. Over the years, accumulating evidence brought to light the role of microRNAs (miRNAs) as disease biomarkers. Methods: In particular, the detection of miRNAs in whole blood or specific blood components such as serum or plasma, allows these molecules to be good candidates for diagnosis, prognosis and for monitoring response to anticancer therapy. In this paper, we evaluated circulating basal levels of 6 previously identified miRNAs in serum samples of 70 BRAF-mutant melanoma patients before starting targeted therapy. Results: Results show that the circulating levels of the oncosuppressor miR-579-3p and of the oncomiR miR-4488 are able to predict progression free survival (PFS) but not overall survival (OS). Most importantly, we observed that the best predictor of disease outcome is represented by the ratio of circulating miR-4488 vs. miR-579-3p (miRatio). Finally, the combination of the Lactate dehydrogenase (LDH) blood levels with the two circulating miRNAs alone or together did not produce any improvement in predicting PFS indicating that miR-579-3p and miR-4488 are independent predictors of PFS as compared to LDH. Conclusions: All together these data underscored the relevance of circulating miRNAs as suitable tools to predict therapy response in melanoma and maybe further developed as companion diagnostics in the clinic.


Assuntos
MicroRNA Circulante , Melanoma , MicroRNAs , Neoplasias Cutâneas , Humanos , Biomarcadores Tumorais/genética , MicroRNA Circulante/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , MicroRNAs/genética , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
6.
Cells ; 11(21)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36359887

RESUMO

Unverricht-Lundborg disease (ULD), also known as progressive myoclonic epilepsy 1 (EPM1), is a rare autosomal recessive neurodegenerative disorder characterized by a complex symptomatology that includes action- and stimulus-sensitive myoclonus and tonic-clonic seizures. The main cause of the onset and development of ULD is a repeat expansion of a dodecamer sequence localized in the promoter region of the gene encoding cystatin B (CSTB), an inhibitor of lysosomal proteases. Although this is the predominant mutation found in most patients, the physio-pathological mechanisms underlying the disease complexity remain largely unknown. In this work, we used patient-specific iPSCs and their neuronal derivatives to gain insight into the molecular and genetic machinery responsible for the disease in two Italian siblings affected by different phenotypes of ULD. Specifically, fragment length analysis on amplified CSTB promoters found homozygous status for dodecamer expansion in both patients and showed that the number of dodecamer repeats is the same in both. Furthermore, the luciferase reporter assay showed that the CSTB promoter activity was similarly reduced in both lines compared to the control. This information allowed us to draw important conclusions: (1) the phenotypic differences of the patients do not seem to be strictly dependent on the genetic mutation around the CSTB gene, and (2) that some other molecular mechanisms, not yet clearly identified, might be taken into account. In line with the inhibitory role of cystatin B on cathepsins, molecular investigations performed on iPSCs-derived neurons showed an increased expression of lysosomal cathepsins (B, D, and L) and a reduced expression of CSTB protein. Intriguingly, the increase in cathepsin expression does not appear to be correlated with the residual amount of CSTB, suggesting that other mechanisms, in addition to the regulation of cathepsins, could be involved in the pathological complexity of the disease.


Assuntos
Síndrome de Unverricht-Lundborg , Humanos , Síndrome de Unverricht-Lundborg/genética , Cistatina B/genética , Irmãos , Perfil Genético , Catepsinas/genética
7.
Int J Infect Dis ; 124: 55-64, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116671

RESUMO

OBJECTIVES: Neutralizing monoclonal antibodies (moAbs) improves clinical outcomes in patients with COVID-19 when administered during the initial days of infection. The action of moAbs may impair the generation or maintenance of effective immune memory, similar to that demonstrated in other viral diseases. We aimed to evaluate short-term memory T-cell responses in patients effectively treated with bamlanivimab/etesevimab, casirivimab/imdevimab, or sotrovimab (SOT). METHODS: Spike (S)-specific T-cell responses were analyzed in 23 patients with COVID-19 (vaccinated or unvaccinated) before and after a median of 50 (range: 28-93) days from moAb treatment, compared with 11 vaccinated healthy controls. T-cell responses were measured by interferon-γ-enzyme-linked immunospot and flow cytometric activation-induced marker assay. RESULTS: No statistically significant difference in S-specific T-cell responses was observed between patients treated with moAb and vaccinated healthy controls. Bamlanivimab/etesevimab and casirivimab/imdevimab groups showed significant increases in cellular responses in paired baseline/postrecovery series, as well as vaccinated patients receiving SOT. In contrast, unvaccinated patients prescribed SOT presented no statistically significant increases in T-cell-responses, suggesting diverse impacts of different moAbs on the evolution of S-specific T-cell responses in vaccinated and unvaccinated patients. CONCLUSION: The moAbs did not hinder short-term memory S-specific T-cell responses in the overall group of patients; however, differences among moAbs must be further investigated both in vaccinated and unvaccinated individuals.


Assuntos
Antineoplásicos Imunológicos , Tratamento Farmacológico da COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais
8.
Mol Cell Endocrinol ; 557: 111739, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35940390

RESUMO

The insulin receptor (IR) gene undergoes differential splicing generating two IR isoforms, IR-A and IR-B. The roles of IR-A in cancer and of IR-B in metabolic regulation are well known but the molecular mechanisms responsible for their different biological effects are poorly understood. We aimed to identify different or similar protein substrates and signaling linked to each IR isoforms. We employed mouse fibroblasts lacking IGF1R gene and expressing exclusively either IR-A or IR-B. By proteomic analysis a total of 2530 proteins were identified and quantified. Proteins and pathways mostly associated with insulin-activated IR-A were involved in cancer, stemness and interferon signaling. Instead, proteins and pathways associated with insulin-stimulated IR-B-expressing cells were mostly involved in metabolic or tumor suppressive functions. These results show that IR-A and IR-B recruit partially different multiprotein complexes in response to insulin, suggesting partially different functions of IR isoforms in physiology and in disease.


Assuntos
Neoplasias , Receptor de Insulina , Animais , Insulina/metabolismo , Interferons , Camundongos , Complexos Multiproteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteômica , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
9.
Cells ; 11(9)2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563738

RESUMO

DJ-1, also called Parkinson's protein 7 (PARK7), is ubiquitously expressed and plays multiple actions in different physiological and, especially, pathophysiological processes, as evidenced by its identification in neurodegenerative diseases and its high expression in different types of cancer. To date, the exact activity of DJ-1 in carcinogenesis has not been fully elucidated, however several recent studies disclosed its involvement in regulating fundamental pathways involved in cancer onset, development, and metastatization. At this purpose, we have dissected the role of DJ-1 in maintaining the transformed phenotype, survival, drug resistance, metastasis formation, and differentiation in cancer cells. Moreover, we have discussed the role of DJ-1 in controlling the redox status in cancer cells, along with the ability to attenuate reactive oxygen species (ROS)-dependent cell death, as well as to mediate ferropotosis. Finally, a mention to the development of therapeutic strategies targeting DJ-1 has been done. We have reported the most recent studies, aiming to shed light on the role played by DJ-1 in different cancer aspects and create the foundation for moving beyond the tip of the iceberg.


Assuntos
Neoplasias , Proteína Desglicase DJ-1 , Humanos , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Oxirredução , Estresse Oxidativo , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Nat Cell Biol ; 24(5): 659-671, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550611

RESUMO

Heart regeneration is an unmet clinical need, hampered by limited renewal of adult cardiomyocytes and fibrotic scarring. Pluripotent stem cell-based strategies are emerging, but unravelling cellular dynamics of host-graft crosstalk remains elusive. Here, by combining lineage tracing and single-cell transcriptomics in injured non-human primate heart biomimics, we uncover the coordinated action modes of human progenitor-mediated muscle repair. Chemoattraction via CXCL12/CXCR4 directs cellular migration to injury sites. Activated fibroblast repulsion targets fibrosis by SLIT2/ROBO1 guidance in organizing cytoskeletal dynamics. Ultimately, differentiation and electromechanical integration lead to functional restoration of damaged heart muscle. In vivo transplantation into acutely and chronically injured porcine hearts illustrated CXCR4-dependent homing, de novo formation of heart muscle, scar-volume reduction and prevention of heart failure progression. Concurrent endothelial differentiation contributed to graft neovascularization. Our study demonstrates that inherent developmental programmes within cardiac progenitors are sequentially activated in disease, enabling the cells to sense and counteract acute and chronic injury.


Assuntos
Proteínas do Tecido Nervoso , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Cicatriz/patologia , Cicatriz/prevenção & controle , Fibrose , Humanos , Miocárdio/patologia , Miócitos Cardíacos/patologia , Células-Tronco Pluripotentes/patologia , Receptores Imunológicos , Suínos
11.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069262

RESUMO

Aberrant glycosylation has long been known to be associated with cancer, since it is involved in key mechanisms such as tumour onset, development and progression. This review will focus on protein glycosylation studies in cells, tissue, urine and serum in the context of prostate cancer. A dedicated section will cover the glycoforms of prostate specific antigen, the molecule that, despite some important limitations, is routinely tested for helping prostate cancer diagnosis. Our aim is to provide readers with an overview of mass spectrometry-based glycoproteomics of prostate cancer. From this perspective, the first part of this review will illustrate the main strategies for glycopeptide enrichment and mass spectrometric analysis. The molecular information obtained by glycoproteomic analysis performed by mass spectrometry has led to new insights into the mechanism linking aberrant glycosylation to cancer cell proliferation, migration and immunoescape.


Assuntos
Biomarcadores Tumorais/análise , Espectrometria de Massas/métodos , Neoplasias da Próstata/metabolismo , Proteômica/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/urina , Glicosilação , Humanos , Masculino , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/urina
12.
J Vis Exp ; (171)2021 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-34028441

RESUMO

Filter-aided sample protocol (FASP) is widely used for proteomics sample preparation because it allows to concentrate diluted samples and it is compatible with a wide variety of detergents. Bottom-up proteomics workflows like FASP increasingly rely on LC-MS/MS methods performed in data-independent analysis (DIA) mode, a scanning method that allows deep proteome coverage and low incidence of missing values. In this report, we will provide the details of a workflow that combines a FASP protocol, a double StageTip purification step and LC-MS/MS in DIA mode for urinary proteome mapping. As a model sample, we analyzed expressed prostatic secretions (EPS)-urine, a sample collected after a digital rectal exam (DRE), which is of interest in prostate cancer biomarker discovery studies.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Digestão , Humanos , Masculino , Proteoma
13.
Stem Cell Res ; 53: 102329, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33865103

RESUMO

Unverricht-Lundborg disease (ULD) is an inherited form of progressive myoclonus epilepsy caused by mutations in the gene encoding Cystatin B (CSTB), an inhibitor of lysosomal proteases. The most common mutation described in ULD patients is an unstable expansion of a dodecamer sequence located in the CSTB gene promoter. This expansion is causative of the downregulation of CSTB gene expression and, consequently, of its inhibitory activity. Here we report the generation of induced pluripotent stem cell (iPSC) lines from two Italian siblings having a family history of ULD and affected by different clinical and pathological phenotypes of the disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Unverricht-Lundborg , Cistatina B/genética , Humanos , Itália , Irmãos
14.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670616

RESUMO

Arrhythmogenic Right Ventricular cardiomyopathy (ARVC) is an inherited cardiac muscle disease linked to genetic deficiency in components of the desmosomes. The disease is characterized by progressive fibro-fatty replacement of the right ventricle, which acts as a substrate for arrhythmias and sudden cardiac death. The molecular mechanisms underpinning ARVC are largely unknown. Here we propose a mathematical model for investigating the molecular dynamics underlying heart remodeling and the loss of cardiac myocytes identity during ARVC. Our methodology is based on three computational models: firstly, in the context of the Wnt pathway, we examined two different competition mechanisms between ß-catenin and Plakoglobin (PG) and their role in the expression of adipogenic program. Secondly, we investigated the role of RhoA-ROCK pathway in ARVC pathogenesis, and thirdly we analyzed the interplay between Wnt and RhoA-ROCK pathways in the context of the ARVC phenotype. We conclude with the following remark: both Wnt/ß-catenin and RhoA-ROCK pathways must be inactive for a significant increase of PPARγ expression, suggesting that a crosstalk mechanism might be responsible for mediating ARVC pathogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Adipogenia/genética , Algoritmos , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Displasia Arritmogênica Ventricular Direita/patologia , Células Cultivadas , Simulação por Computador , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Teóricos , PPAR gama/genética , PPAR gama/metabolismo , gama Catenina/metabolismo
15.
Cell Rep ; 34(8): 108778, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33626357

RESUMO

The 3' untranslated regions (3' UTRs) of messenger RNAs (mRNAs) are non-coding sequences involved in many aspects of mRNA metabolism, including intracellular localization and translation. Incorrect processing and delivery of mRNA cause severe developmental defects and have been implicated in many neurological disorders. Here, we use deep sequencing to show that in sympathetic neuron axons, the 3' UTRs of many transcripts undergo cleavage, generating isoforms that express the coding sequence with a short 3' UTR and stable 3' UTR-derived fragments of unknown function. Cleavage of the long 3' UTR of Inositol Monophosphatase 1 (IMPA1) mediated by a protein complex containing the endonuclease argonaute 2 (Ago2) generates a translatable isoform that is necessary for maintaining the integrity of sympathetic neuron axons. Thus, our study provides a mechanism of mRNA metabolism that simultaneously regulates local protein synthesis and generates an additional class of 3' UTR-derived RNAs.


Assuntos
Regiões 3' não Traduzidas , Axônios/enzimologia , Corpo Celular/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , RNA Mensageiro/metabolismo , Gânglio Cervical Superior/enzimologia , Transcrição Gênica , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteína Semelhante a ELAV 4/genética , Proteína Semelhante a ELAV 4/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Masculino , Células PC12 , Monoéster Fosfórico Hidrolases/genética , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/metabolismo , Poliadenilação , Biossíntese de Proteínas , Isoformas de Proteínas , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Gânglio Cervical Superior/citologia , Transativadores/genética , Transativadores/metabolismo
16.
Neurotox Res ; 39(3): 645-657, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33428179

RESUMO

At present, concerns are pointing to "tasteful" high-fat diets as a cause of conditioning physical-social states that through alterations of some key emotional- and nutritional-related limbic circuits such as hypothalamic and amygdalar areas lead to obesity states. Feeding and energetic homeostatic molecular mechanisms are part of a complex neuronal circuit accounting for this metabolic disorder. In an attempt to exclude conventional drugs for treating obesity, daidzein, a natural glycosidic isoflavone, which mimics estrogenic neuroprotective properties against increased body weight, is beginning to be preferred. In this study, evident anxiolytic-like behaviors were detected following treatment of high-fat diet hamsters with daidzein as shown by extremely evident (p < 0.001) exploration tendencies in novel object recognition test and a notably greater amount of time spent (p < 0.01) in open arms of elevated plus maze. Moreover, the isoflavone promoted a protective role against neurodegeneration processes as shown by few, if any, amino cupric silver granules in amygdalar, hypothalamic and hippocampal neuronal fields when compared with obese hamsters. Interestingly, elevated expression levels of the anorexic neuropeptide receptor neurotensin1 in the above limbic areas of obese hamsters were extremely reduced by daidzein, especially during recovery of cognitive events. Contextually, such effects were strongly paralleled by increased levels of the anti-neuroinflammatory cytokine, interleukin-10. Our results corroborate a neuroprotective ability of this natural glycosidic isoflavone, which through its interaction with the receptor neurotensin1 and interleukin-10 pathways is correlated not only to improved feeding states, and subsequently obesity conditions, but above all to cognitive performances.


Assuntos
Encéfalo/metabolismo , Interleucina-10/biossíntese , Isoflavonas/farmacologia , Nootrópicos/farmacologia , Obesidade/metabolismo , Receptores de Neurotensina/biossíntese , Animais , Encéfalo/efeitos dos fármacos , Cricetinae , Dieta Hiperlipídica/efeitos adversos , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Expressão Gênica , Isoflavonas/uso terapêutico , Mesocricetus , Nootrópicos/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/psicologia , Fitoestrógenos/farmacologia , Fitoestrógenos/uso terapêutico
17.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114544

RESUMO

The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) exert pleiotropic effects on cardiac cell biology which are not yet fully understood. Here we tested whether statin treatment affects resident endogenous cardiac stem/progenitor cell (CSC) activation in vitro and in vivo after myocardial infarction (MI). Statins (Rosuvastatin, Simvastatin and Pravastatin) significantly increased CSC expansion in vitro as measured by both BrdU incorporation and cell growth curve. Additionally, statins increased CSC clonal expansion and cardiosphere formation. The effects of statins on CSC growth and differentiation depended on Akt phosphorylation. Twenty-eight days after myocardial infarction by permanent coronary ligation in rats, the number of endogenous CSCs in the infarct border zone was significantly increased by Rosuvastatin-treatment as compared to untreated controls. Additionally, commitment of the activated CSCs into the myogenic lineage (c-kitpos/Gata4pos CSCs) was increased by Rosuvastatin administration. Accordingly, Rosuvastatin fostered new cardiomyocyte formation after MI. Finally, Rosuvastatin treatment reversed the cardiomyogenic defects of CSCs in c-kit haploinsufficient mice, increasing new cardiomyocyte formation by endogenous CSCs in these mice after myocardial infarction. In summary, statins, by sustaining Akt activation, foster CSC growth and differentiation in vitro and in vivo. The activation and differentiation of the endogenous CSC pool and consequent new myocyte formation by statins improve myocardial remodeling after coronary occlusion in rodents. Similar effects might contribute to the beneficial effects of statins on human cardiovascular diseases.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Células Musculares/citologia , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/citologia , Células-Tronco/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Camundongos , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Fosforilação/efeitos dos fármacos , Pravastatina/administração & dosagem , Pravastatina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Rosuvastatina Cálcica/administração & dosagem , Rosuvastatina Cálcica/farmacologia , Sinvastatina/administração & dosagem , Sinvastatina/farmacologia , Células-Tronco/citologia , Células-Tronco/metabolismo
18.
Cells ; 9(9)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858971

RESUMO

Enhanced glycolysis is a hallmark of breast cancer. In cancer cells, the high glycolytic flux induces carbonyl stress, a damaging condition in which the increase of reactive carbonyl species makes DNA, proteins, and lipids more susceptible to glycation. Together with glucose, methylglyoxal (MGO), a byproduct of glycolysis, is considered the main glycating agent. MGO is highly diffusible, enters the nucleus, and can react with easily accessible lysine- and arginine-rich tails of histones. Glycation adducts on histones undergo oxidization and further rearrange to form stable species known as advanced glycation end-products (AGEs). This modification alters nucleosomes stability and chromatin architecture deconstructing the histone code. Formation of AGEs has been associated with cancer, diabetes, and several age-related diseases. Recently, DJ-1, a cancer-associated protein that protects cells from oxidative stress, has been described as a deglycase enzyme. Although its role in cell survival results still controversial, in several human tumors, its expression, localization, oxidation, and phosphorylation were found altered. This work aimed to explore the molecular mechanism that triggers the peculiar cellular compartmentalization and the specific post-translational modifications (PTM) that, occurring in breast cancer cells, influences the DJ-1 dual role. Using a proteomic approach, we identified on DJ-1 a novel threonine phosphorylation (T125) that was found, by the in-silico tool scansite 4, as part of a putative Akt consensus. Notably, this threonine is in addition to histidine 126, a key residue involved in the formation of catalytic triade (glu18-Cys106-His126) inside the glioxalase active site of DJ. Interestingly, we found that pharmacological modulation of Akt pathway induces a functional tuning of DJ-1 proteoforms, as well as their shuttle from cytosol to nucleus, pointing out that pathway as critical in the development of DJ-1 pro-tumorigenic abilities. Deglycase activity of DJ-1 on histones proteins, investigated by coupling 2D tau gel with LC-MS/MS and 2D-TAU (Triton-Acid-Urea)-Western blot, was found correlated with its phosphorylation status that, in turn, depends from Akt activation. In normal conditions, DJ-1 acts as a redox-sensitive chaperone and as an oxidative stress sensor. In cancer cells, glycolytic rewiring, inducing increased reactive oxygen species (ROS) levels, enhances AGEs products. Alongside, the moderate increase of ROS enhances Akt signaling that induces DJ-1-phosphorylation. When phosphorylated DJ-1 increases its glyoxalase activity, the level of AGEs on histones decreases. Therefore, phospho-DJ-1 prevents glycation-induced histones misregulation and its Akt-related hyperactivity represents a way to preserve the epigenome landscape sustaining proliferation of cancer cells. Together, these results shed light on an interesting mechanism that cancer cells might execute to escape the metabolic induced epigenetic misregulation that otherwise could impair their malignant proliferative potential.


Assuntos
Neoplasias da Mama/genética , Cromatografia Líquida/métodos , Epigênese Genética/genética , Proteína Desglicase DJ-1/metabolismo , Espectrometria de Massas em Tandem/métodos , Feminino , Humanos , Modelos Moleculares
19.
Biosensors (Basel) ; 10(3)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121446

RESUMO

In this work, a disposable passive microfluidic device for cell culturing that does not require any additional/external pressure sources is introduced. By regulating the height of fluidic columns and the aperture and closure of the source wells, the device can provide different media and/or drug flows, thereby allowing different flow patterns with respect to time. The device is made of two Polymethylmethacrylate (PMMA) layers fabricated by micro-milling and solvent assisted bonding and allows us to ensure a flow rate of 18.6 µl/ℎ - 7%/day, due to a decrease of the fluid height while the liquid is driven from the reservoirs into the channels. Simulations and experiments were conducted to characterize flows and diffusion in the culture chamber. Melanoma tumor cells were used to test the device and carry out cell culturing experiments for 48 hours. Moreover, HeLa, Jurkat, A549 and HEK293T cell lines were cultivated successfully inside the microfluidic device for 72 hours.


Assuntos
Técnicas de Cultura de Células/métodos , Microfluídica/métodos , Humanos
20.
Aging (Albany NY) ; 11(23): 11722-11755, 2019 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-31816600

RESUMO

Histones and their variants are subjected to several post-translational modifications (PTMs). Histones PTMs play an important role in the regulation of gene expression and are critical for the development and progression of many types of cancer, including breast cancer. In this study, we used two-dimensional TAU/SDS electrophoresis, coupled with mass spectrometry for a comprehensive profiling of histone PTMs in breast cancer cell lines.Proteomic approach allowed us to identify 85 histone PTMs, seventeen of which are not reported in the UniProt database. Western blot analysis was performed to confirm a peculiar pattern of PTMs in the sporadic and hereditary breast cancer cell lines compared to normal cells. Overlapping mass spectrometry data with western blotting results, we identified, for the first time to our knowledge, a tyrosine phosphorylation on histone H1, which is significantly higher in breast cancer cells. Additionally, by inhibiting specific signaling paths, such as PI3K, PPARγ and FAK pathways, we established a correlation between their regulation and the presence of new histone PTMs. Our results may provide new insight on the possible implication of these modifications in breast cancer and may offer new perspectives for future clinical applications.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Histonas/metabolismo , Proteômica , Proliferação de Células , Feminino , Histonas/genética , Humanos , Células MCF-7 , Processamento de Proteína Pós-Traducional , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA