Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 70(5): 963-973, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30677458

RESUMO

BACKGROUND & AIMS: Although the role of inflammation to combat infection is known, the contribution of metabolic changes in response to sepsis is poorly understood. Sepsis induces the release of lipid mediators, many of which activate nuclear receptors such as the peroxisome proliferator-activated receptor (PPAR)α, which controls both lipid metabolism and inflammation. We aimed to elucidate the previously unknown role of hepatic PPARα in the response to sepsis. METHODS: Sepsis was induced by intraperitoneal injection of Escherichia coli in different models of cell-specific Ppara-deficiency and their controls. The systemic and hepatic metabolic response was analyzed using biochemical, transcriptomic and functional assays. PPARα expression was analyzed in livers from elective surgery and critically ill patients and correlated with hepatic gene expression and blood parameters. RESULTS: Both whole body and non-hematopoietic Ppara-deficiency in mice decreased survival upon bacterial infection. Livers of septic Ppara-deficient mice displayed an impaired metabolic shift from glucose to lipid utilization resulting in more severe hypoglycemia, impaired induction of hyperketonemia and increased steatosis due to lower expression of genes involved in fatty acid catabolism and ketogenesis. Hepatocyte-specific deletion of PPARα impaired the metabolic response to sepsis and was sufficient to decrease survival upon bacterial infection. Hepatic PPARA expression was lower in critically ill patients and correlated positively with expression of lipid metabolism genes, but not with systemic inflammatory markers. CONCLUSION: During sepsis, Ppara-deficiency in hepatocytes is deleterious as it impairs the adaptive metabolic shift from glucose to FA utilization. Metabolic control by PPARα in hepatocytes plays a key role in the host defense against infection. LAY SUMMARY: As the main cause of death in critically ill patients, sepsis remains a major health issue lacking efficacious therapies. While current clinical literature suggests an important role for inflammation, metabolic aspects of sepsis have mostly been overlooked. Here, we show that mice with an impaired metabolic response, due to deficiency of the nuclear receptor PPARα in the liver, exhibit enhanced mortality upon bacterial infection despite a similar inflammatory response, suggesting that metabolic interventions may be a viable strategy for improving sepsis outcomes.


Assuntos
Adaptação Fisiológica , Fígado/metabolismo , PPAR alfa/fisiologia , Sepse/metabolismo , Animais , Infecções Bacterianas/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Inflamação/etiologia , Camundongos , Camundongos Endogâmicos C57BL
2.
PLoS One ; 9(2): e87452, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498325

RESUMO

BACKGROUND: The Ikkα kinase, a subunit of the NF-κB-activating IKK complex, has emerged as an important regulator of inflammatory gene expression. However, the role of Ikkα-mediated phosphorylation in haematopoiesis and atherogenesis remains unexplored. In this study, we investigated the effect of a bone marrow (BM)-specific activation-resistant Ikkα mutant knock-in on haematopoiesis and atherosclerosis in mice. METHODS AND RESULTS: Apolipoprotein E (Apoe)-deficient mice were transplanted with BM carrying an activation-resistant Ikkα gene (Ikkα(AA/AA)Apoe(-/-) ) or with Ikkα(+/+)Apoe(-/-) BM as control and were fed a high-cholesterol diet for 8 or 13 weeks. Interestingly, haematopoietic profiling by flow cytometry revealed a significant decrease in B-cells, regulatory T-cells and effector memory T-cells in Ikkα(AA/AA)Apoe(-/-) BM-chimeras, whereas the naive T-cell population was increased. Surprisingly, no differences were observed in the size, stage or cellular composition of atherosclerotic lesions in the aorta and aortic root of Ikkα(AA/AA)Apoe(-/-) vs Ikkα(+/+)Apoe(-/-) BM-transplanted mice, as shown by histological and immunofluorescent stainings. Necrotic core sizes, apoptosis, and intracellular lipid deposits in aortic root lesions were unaltered. In vitro, BM-derived macrophages from Ikkα(AA/AA)Apoe(-/-) vs Ikkα(+/+)Apoe(-/-) mice did not show significant differences in the uptake of oxidized low-density lipoproteins (oxLDL), and, with the exception of Il-12, the secretion of inflammatory proteins in conditions of Tnf-α or oxLDL stimulation was not significantly altered. Furthermore, serum levels of inflammatory proteins as measured with a cytokine bead array were comparable. CONCLUSION: Our data reveal an important and previously unrecognized role of haematopoietic Ikkα kinase activation in the homeostasis of B-cells and regulatory T-cells. However, transplantation of Ikkα(AA) mutant BM did not affect atherosclerosis in Apoe(-/-) mice. This suggests that the diverse functions of Ikkα in haematopoietic cells may counterbalance each other or may not be strong enough to influence atherogenesis, and reveals that targeting haematopoietic Ikkα kinase activity alone does not represent a therapeutic approach.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/genética , Medula Óssea/metabolismo , Hematopoese/genética , Quinase I-kappa B/genética , Mutação , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Linfócitos B/metabolismo , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Células Cultivadas , Citometria de Fluxo , Quinase I-kappa B/metabolismo , Interleucina-12/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
PLoS One ; 7(3): e32440, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22403661

RESUMO

OBJECTIVE: A genomic region near the CDKN2A locus, encoding p16(INK4a), has been associated to type 2 diabetes and atherosclerotic vascular disease, conditions in which inflammation plays an important role. Recently, we found that deficiency of p16(INK4a) results in decreased inflammatory signaling in murine macrophages and that p16(INK4a) influences the phenotype of human adipose tissue macrophages. Therefore, we investigated the influence of immune cell p16(INK4a) on glucose tolerance and atherosclerosis in mice. METHODS AND RESULTS: Bone marrow p16(INK4a)-deficiency in C57Bl6 mice did not influence high fat diet-induced obesity nor plasma glucose and lipid levels. Glucose tolerance tests showed no alterations in high fat diet-induced glucose intolerance. While bone marrow p16(INK4a)-deficiency did not affect the gene expression profile of adipose tissue, hepatic expression of the alternative markers Chi3l3, Mgl2 and IL10 was increased and the induction of pro-inflammatory Nos2 was restrained on the high fat diet. Bone marrow p16(INK4a)-deficiency in low density lipoprotein receptor-deficient mice did not affect western diet-induced atherosclerotic plaque size or morphology. In line, plasma lipid levels remained unaffected and p16(INK4a)-deficient macrophages displayed equal cholesterol uptake and efflux compared to wild type macrophages. CONCLUSION: Bone marrow p16(INK4a)-deficiency does not affect plasma lipids, obesity, glucose tolerance or atherosclerosis in mice.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Medula Óssea/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Glucose/metabolismo , Homeostase , Obesidade/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/metabolismo , Humanos , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Receptores de LDL/deficiência
4.
Blood ; 118(9): 2556-66, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21636855

RESUMO

The CDKN2A locus, which contains the tumor suppressor gene p16(INK4a), is associated with an increased risk of age-related inflammatory diseases, such as cardiovascular disease and type 2 diabetes, in which macrophages play a crucial role. Monocytes can polarize toward classically (CAMϕ) or alternatively (AAMϕ) activated macrophages. However, the molecular mechanisms underlying the acquisition of these phenotypes are not well defined. Here, we show that p16(INK4a) deficiency (p16(-/-)) modulates the macrophage phenotype. Transcriptome analysis revealed that p16(-/-) BM-derived macrophages (BMDMs) exhibit a phenotype resembling IL-4-induced macrophage polarization. In line with this observation, p16(-/-) BMDMs displayed a decreased response to classically polarizing IFNγ and LPS and an increased sensitivity to alternative polarization by IL-4. Furthermore, mice transplanted with p16(-/-) BM displayed higher hepatic AAMϕ marker expression levels on Schistosoma mansoni infection, an in vivo model of AAMϕ phenotype skewing. Surprisingly, p16(-/-) BMDMs did not display increased IL-4-induced STAT6 signaling, but decreased IFNγ-induced STAT1 and lipopolysaccharide (LPS)-induced IKKα,ß phosphorylation. This decrease correlated with decreased JAK2 phosphorylation and with higher levels of inhibitory acetylation of STAT1 and IKKα,ß. These findings identify p16(INK4a) as a modulator of macrophage activation and polarization via the JAK2-STAT1 pathway with possible roles in inflammatory diseases.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Genes p16 , Inflamação/genética , Janus Quinase 2/fisiologia , Ativação de Macrófagos , Fator de Transcrição STAT1/fisiologia , Animais , Transplante de Medula Óssea , Inibidor p16 de Quinase Dependente de Ciclina/fisiologia , Citocinas/biossíntese , Quinase I-kappa B/fisiologia , Interferon gama/farmacologia , Interleucina-4/farmacologia , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Fígado/patologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Processamento de Proteína Pós-Traducional , Quimera por Radiação , Fator de Transcrição STAT6/fisiologia , Esquistossomose/imunologia , Transdução de Sinais
5.
Arterioscler Thromb Vasc Biol ; 31(2): 245-52, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21106948

RESUMO

OBJECTIVE: Telomerase serves as a critical regulator of tissue renewal. Although telomerase activity is inducible in response to various environmental cues, it remains unknown whether telomerase is activated during the inflammatory remodeling underlying atherosclerosis formation. To address this question, we investigated in the present study the regulation of telomerase in macrophages and during atherosclerosis development in low-density lipoprotein receptor-deficient mice. METHODS AND RESULTS: We demonstrate that inflammatory stimuli activate telomerase in macrophages by inducing the expression of the catalytic subunit telomerase reverse transcriptase (TERT). Reporter and chromatin immunoprecipitation assays identified a previously unrecognized nuclear factor-κB (NF-κB) response element in the TERT promoter, to which NF-κB is recruited during inflammation. Inhibition of NF-κB signaling completely abolished the induction of TERT expression, characterizing TERT as a bona fide NF-κB target gene. Furthermore, functional experiments revealed that TERT deficiency results in a senescent cell phenotype. Finally, we demonstrate high levels of TERT expression in macrophages of human atherosclerotic lesions and establish that telomerase is activated during atherosclerosis development in low-density lipoprotein receptor-deficient mice. CONCLUSIONS: These results characterize TERT as a previously unrecognized NF-κB target gene in macrophages and demonstrate that telomerase is activated during atherosclerosis. This induction of TERT expression prevents macrophage senescence and may have important implications for the development of atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Inflamação/metabolismo , Macrófagos/enzimologia , Telomerase/metabolismo , Animais , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Células Cultivadas , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Humanos , Inflamação/patologia , Inflamação/fisiopatologia , Lipopolissacarídeos/farmacologia , Lipoproteínas LDL/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética , Telomerase/genética , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA