Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; : e202400391, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877657

RESUMO

Interactions between the tumor-associated carbohydrate antigens of Mucin 1 (MUC1) and the carbohydrate-binding proteins, lectins, often lead to the creation of a pro-tumor microenvironment favoring tumor initiation, progression, metastasis, and immune evasion. Macrophage galactose binding lectin (MGL) is a C-type lectin receptor found on antigen-presenting cells that facilitates the uptake of carbohydrate antigens for antigen presentation, modulating the immune response homeostasis, autoimmunity, and cancer. Considering the crucial role of tumor-associated forms of MUC1 and MGL in tumor immunology, a thorough understanding of their binding interaction is essential for it to be exploited for cancer vaccine strategies. The synthesis of MUC1 glycopeptide models carrying a single or multiple Tn and/or sialyl-Tn antigen(s) is described. A novel approach for the sialyl-Tn threonine building block suitable for the solid phase peptide synthesis was developed. The thermodynamic profile of the binding interaction between the human MGL and MUC1 glycopeptide models was analyzed using isothermal titration calorimetry. The measured dissociation constants for the sialyl-Tn-bearing peptide epitopes were consistently lower compared to the Tn antigen and ranged from 10 µM for mono- to 100 nM for triglycosylated MUC1 peptide, respectively. All studied interactions, regardless of the glycan's site of attachment or density, exhibited enthalpy-driven thermodynamics.

2.
Cancers (Basel) ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611013

RESUMO

Siglecs play a key role in mediating cell-cell interactions via the recognition of different sialylated glycoconjugates, including tumor-associated MUC1, which can lead to the activation or inhibition of the immune response. The activation occurs through the signaling of Siglecs with the cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins, while the inhibition signal is a result of the interaction of intracellular immunoreceptor tyrosine-based inhibition motif (ITIM)-bearing receptors. The interaction of tumor-associated MUC1 sialylated glycans with Siglecs via ITIM motifs decreases antitumor immunity. Consequently, these interactions are expected to play a key role in tumor evasion. Efforts to modulate the response of immune cells by blocking the immune-suppressive effects of inhibitory Siglecs, driving immune-activating Siglecs, and/or altering the synthesis and expression of the sialic acid glycocalyx are new therapeutic strategies deserving further investigation. We will highlight the role of Siglec's family receptors in immune evasion through interactions with glycan ligands in their natural context, presented on the protein such as MUC1, factors affecting their fine binding specificities, such as the role of multivalency either at the ligand or receptor side, their spatial organization, and finally the current and future therapeutic interventions targeting the Siglec-sialylated MUC1 immune axis in cancer.

3.
Histochem Cell Biol ; 156(3): 253-272, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34152508

RESUMO

Wild-type lectins have distinct types of modular design. As a step to explain the physiological importance of their special status, hypothesis-driven protein engineering is used to generate variants. Concerning adhesion/growth-regulatory galectins, non-covalently associated homodimers are commonly encountered in vertebrates. The homodimeric galectin-7 (Gal-7) is a multifunctional context-dependent modulator. Since the possibility of conversion from the homodimer to hybrids with other galectin domains, i.e. from Gal-1 and Gal-3, has recently been discovered, we designed Gal-7-based constructs, i.e. stable (covalently linked) homo- and heterodimers. They were produced and purified by affinity chromatography, and the sugar-binding activity of each lectin unit proven by calorimetry. Inspection of profiles of binding of labeled galectins to an array-like platform with various cell types, i.e. sections of murine epididymis and jejunum, and impact on neuroblastoma cell proliferation revealed no major difference between natural and artificial (stable) homodimers. When analyzing heterodimers, acquisition of altered properties was seen. Remarkably, binding properties and activity as effector can depend on the order of arrangement of lectin domains (from N- to C-termini) and on the linker length. After dissociation of the homodimer, the Gal-7 domain can build new functionally active hybrids with other partners. This study provides a clear direction for research on defining the full range of Gal-7 functionality and offers the perspective of testing applications for engineered heterodimers.


Assuntos
Galectinas/metabolismo , Engenharia de Proteínas , Linhagem Celular Tumoral , Galectinas/análise , Galectinas/isolamento & purificação , Humanos , Espectrometria de Massas
4.
Biochemistry ; 60(7): 547-558, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33560106

RESUMO

Human macrophage galactose-type lectin (hMGL, HML, CD301, CLEC10A), a C-type lectin expressed by dendritic cells and macrophages, is a receptor for N-acetylgalactosamine α-linked to serine/threonine residues (Tn antigen, CD175) and its α2,6-sialylated derivative (sTn, CD175s). Because these two epitopes are among malignant cell glycan displays, particularly when presented by mucin-1 (MUC1), assessing the influence of the site and frequency of glycosylation on lectin recognition will identify determinants governing this interplay. Thus, chemical synthesis of the tandem-repeat O-glycan acceptor region of MUC1 and site-specific threonine glycosylation in all permutations were carried out. Isothermal titration calorimetry (ITC) analysis of the binding of hMGL to this library of MUC1 glycopeptides revealed an enthalpy-driven process and an affinity enhancement of an order of magnitude with an increasing glycan count from 6-8 µM for monoglycosylated peptides to 0.6 µM for triglycosylated peptide. ITC measurements performed in D2O permitted further exploration of the solvation dynamics during binding. A shift in enthalpy-entropy compensation and contact position-specific effects with the likely involvement of the peptide surroundings were detected. KinITC analysis revealed a prolonged lifetime of the lectin-glycan complex with increasing glycan valency and with a change in the solvent to D2O.


Assuntos
Lectinas Tipo C/química , Mucina-1/química , Sequência de Aminoácidos , Antígenos Glicosídicos Associados a Tumores/química , Antígenos Glicosídicos Associados a Tumores/metabolismo , Calorimetria/métodos , Epitopos/metabolismo , Galactose , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Mucina-1/metabolismo , Ligação Proteica
5.
Pept Sci (Hoboken) ; 112(4)2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33073165

RESUMO

The creation of the 9-fluorenylmethoxycarbonyl (Fmoc) group by the Carpino laboratory facilitated the synthesis of peptides containing acid-sensitive groups, such as O-linked glycosides. To fully investigative collagen biochemistry, one needs to assemble peptides that possess glycosylated 5-hydroxylysine (Hyl). A convenient method for the synthesis of Fmoc-Hyl(ε-tert-butyloxycarbonyl (Boc),O-tert-butyldimethylsilyl (TBDMS)) and efficient methods for the synthesis of Fmoc-Hyl[ε-Boc,O-(2,3,4,6-tetra-O-acetyl-ß-D-galactopyranosyl)] have been developed. Glycosylated Fmoc-Hyl derivatives were used to construct a series of types I-IV collagen-model triple-helical peptides (THPs) that incorporated known or proposed receptor binding sites. Glycosylation of Hyl was found to strongly down-regulate the binding of CD44 and the α3ß1 integrin to collagen, while the impact on α2ß1 integrin binding was more modest. Molecular modeling of integrin binding indicated that Hyl glycosylation directly impacted the association between the α3ß1 integrin metal ion-dependent adhesion site (MIDAS) and the receptor binding site within type IV collagen. The Fmoc solid-phase strategy ultimately allowed for chemical biology approaches to be utilized to study tumor cell interactions with glycosylated collagen sequences and document the modulation of receptor interactions by Hyl posttranslational modification.

6.
Glycoconj J ; 37(6): 657-666, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33001366

RESUMO

Aberrant Mucin-1 (MUC1) glycosylation with the Thomsen-Friedenreich (TF) tumor-associated antigen (CD176) is a hallmark of epithelial carcinoma progression and poor patient prognosis. Recognition of TF by glycan-binding proteins, such as galectins, enables the pathological repercussions of this glycan presentation, yet the underlying binding specificities of different members of the galectin family is a matter of continual investigation. While Galectin-3 (Gal-3) recognition of TF has been well-documented at both the cellular and molecular level, Galectin-1 (Gal-1) recognition of TF has only truly been alluded to in cell-based platforms. Immunohistochemical analyses have purported Gal-1 binding to TF on MUC1 at the cell surface, however binding at the molecular level was inconclusive. We hypothesize that glycan scaffold (MUC1's tandem repeat peptide sequence) and/or multivalency play a role in the binding recognition of TF antigen by Gal-1. In this study we have developed a method for large-scale expression of Gal-1 and its histidine-tagged analog for use in binding studies by isothermal titration calorimetry (ITC) and development of an analytical method based on AlphaScreen technology to screen for Gal-1 inhibitors. Surprisingly, neither glycan scaffold or multivalent presentation of TF antigen on the scaffold was able to entice Gal-1 recognition to the level of affinity expected for functional significance. Future evaluations of the Gal-1/TF binding interaction in order to draw connections between immunohistochemical data and analytical measurements are warranted.


Assuntos
Antígenos Glicosídicos Associados a Tumores/imunologia , Galectina 1/genética , Mucina-1/genética , Antígenos Glicosídicos Associados a Tumores/genética , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/imunologia , Galectina 1/imunologia , Galectinas/genética , Galectinas/imunologia , Glicopeptídeos/genética , Glicopeptídeos/imunologia , Humanos , Mucina-1/imunologia , Ligação Proteica/genética , Ligação Proteica/imunologia
7.
Semin Immunol ; 47: 101389, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31926647

RESUMO

The transformation from normal to malignant phenotype in human cancers is associated with aberrant cell-surface glycosylation. It has frequently been reported that MUC1, the heavily glycosylated cell-surface mucin, is altered in both, expression and glycosylation pattern, in human carcinomas of the epithelium. The presence of incomplete or truncated glycan structures, often capped by sialic acid, commonly known as tumor-associated carbohydrate antigens (TACAs), play a key role in tumor initiation, progression, and metastasis. Accumulating evidence suggests that expression of TACAs is associated with tumor escape from immune defenses. In this report, we will give an overview of the oncogenic functions of MUC1 that are exerted through TACA interactions with endogenous carbohydrate-binding proteins (lectins). These interactions often lead to creation of a pro-tumor microenvironment, favoring tumor progression and metastasis, and tumor evasion. In addition, we will describe current efforts in the design of cancer vaccines with special emphasis on synthetic MUC1 glycopeptide vaccines. Analysis of the key factors that govern structure-based design of immunogenic MUC1 glycopeptide epitopes are described. The role of TACA type, position, and density on observed humoral and cellular immune responses is evaluated.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos Glicosídicos Associados a Tumores/imunologia , Vacinas Anticâncer/imunologia , Mucina-1/imunologia , Polissacarídeos/imunologia , Vacinologia , Adjuvantes Imunológicos , Animais , Antígenos de Neoplasias/química , Antígenos Glicosídicos Associados a Tumores/química , Antígenos Glicosídicos Associados a Tumores/metabolismo , Vacinas Anticâncer/efeitos adversos , Vacinas Anticâncer/uso terapêutico , Membrana Celular/imunologia , Membrana Celular/metabolismo , Progressão da Doença , Humanos , Evasão da Resposta Imune , Imunoterapia , Lectinas/metabolismo , Mucina-1/química , Mucina-1/metabolismo , Metástase Neoplásica , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Ligação Proteica , Vacinologia/métodos
8.
J Org Chem ; 85(3): 1434-1445, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31799848

RESUMO

One of the main barriers to explaining the functional significance of glycan-based changes in cancer is the natural epitope heterogeneity found on the surface of cancer cells. To help address this knowledge gap, we focused on designing synthetic tools to explore the role of tumor-associated glycans of MUC1 in the formation of metastasis via association with lectins. In this study, we have synthesized for the first time a MUC1-derived positional scanning synthetic glycopeptide combinatorial library (PS-SGCL) that vary in number and location of cancer-associated Tn antigen using the "tea bag" approach. The determination of the isokinetic ratios necessary for the equimolar incorporation of (glyco)amino acids mixtures to resin-bound amino acid was determined, along with developing an efficient protocol for on resin deprotection of O-acetyl groups. Enzyme-linked lectin assay was used to screen PS-SGCL against two plant lectins, Glycine max soybean agglutinin and Vicia villosa. The results revealed a carbohydrate density-dependent affinity trend and site-specific glycosylation requirements for high affinity binding to these lectins. Hence, PS-SGCLs provide a platform to systematically elucidate MUC1-lectin binding specificities, which in the long term may provide a rational design for novel inhibitors of MUC1-lectin interactions involved in tumor spread and glycopeptide-based cancer vaccines.


Assuntos
Glicopeptídeos , Lectinas , Epitopos , Glicosilação , Mucina-1
9.
Proc Natl Acad Sci U S A ; 116(8): 2837-2842, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718416

RESUMO

Glycan-lectin recognition is assumed to elicit its broad range of (patho)physiological functions via a combination of specific contact formation with generation of complexes of distinct signal-triggering topology on biomembranes. Faced with the challenge to understand why evolution has led to three particular modes of modular architecture for adhesion/growth-regulatory galectins in vertebrates, here we introduce protein engineering to enable design switches. The impact of changes is measured in assays on cell growth and on bridging fully synthetic nanovesicles (glycodendrimersomes) with a chemically programmable surface. Using the example of homodimeric galectin-1 and monomeric galectin-3, the mutual design conversion caused qualitative differences, i.e., from bridging effector to antagonist/from antagonist to growth inhibitor and vice versa. In addition to attaining proof-of-principle evidence for the hypothesis that chimera-type galectin-3 design makes functional antagonism possible, we underscore the value of versatile surface programming with a derivative of the pan-galectin ligand lactose. Aggregation assays with N,N'-diacetyllactosamine establishing a parasite-like surface signature revealed marked selectivity among the family of galectins and bridging potency of homodimers. These findings provide fundamental insights into design-functionality relationships of galectins. Moreover, our strategy generates the tools to identify biofunctional lattice formation on biomembranes and galectin-reagents with therapeutic potential.


Assuntos
Galectina 1/química , Galectina 3/química , Glicoconjugados/química , Polissacarídeos/química , Amino Açúcares/química , Amino Açúcares/metabolismo , Sítios de Ligação , Proteínas Sanguíneas , Adesão Celular/genética , Proliferação de Células/genética , Galectina 1/genética , Galectina 3/genética , Galectinas , Humanos , Lactose/química , Ligantes , Nanopartículas/química , Polissacarídeos/genética
10.
Amino Acids ; 49(11): 1867-1883, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28894966

RESUMO

The transformation from normal to malignant phenotype in human cancers is associated with aberrant cell-surface glycosylation. Thus, targeting glycosylation changes in cancer is likely to provide not only better insight into the roles of carbohydrates in biological systems, but also facilitate the development of new molecular probes for bioanalytical and biomedical applications. In the reported study, we have synthesized lectinomimics based on odorranalectin 1; the smallest lectin-like cyclic peptide isolated from the frog Odorrana grahami skin, and assessed the ability of these peptides to bind specific carbohydrates on molecular and cellular levels. In addition, we have shown that the disulfide bond found in 1 can be replaced with a lactam bridge. However, the orientation of the lactam bridge, peptides 2 and 3, influenced cyclic peptide's conformation and thus these peptides' ability to bind carbohydrates. Naturally occurring 1 and its analog 3 that adopt similar conformation in water bind preferentially L-fucose, and to a lesser degree D-galactose and N-acetyl-D-galactosamine, typically found within the mucin O-glycan core structures. In cell-based assays, peptides 1 and 3 showed a similar binding profile to Aleuria aurantia lectin and these two peptides inhibited the migration of metastatic breast cancer cell lines in a Transwell assay. Altogether, the reported data demonstrate the feasibility of designing lectinomimics based on cyclic peptides.


Assuntos
Sistemas de Liberação de Medicamentos , Lectinas , Neoplasias/metabolismo , Peptídeos Cíclicos/síntese química , Peptidomiméticos/síntese química , Polissacarídeos/metabolismo , Ligação Competitiva , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fucose/agonistas , Fucose/metabolismo , Células Hep G2 , Humanos , Concentração Inibidora 50 , Lactamas/química , Lectinas/química , Lectinas/metabolismo , Células MCF-7 , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Peptidomiméticos/farmacologia , Polissacarídeos/química , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
11.
Sci Rep ; 6: 31740, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27545199

RESUMO

MUC1 is a shared tumor antigen expressed on >80% of human cancers. We completed the first prophylactic cancer vaccine clinical trial based on a non-viral antigen, MUC1, in healthy individuals at-risk for colon cancer. This trial provided a unique source of potentially effective and safe immunotherapeutic drugs, fully-human antibodies affinity-matured in a healthy host to a tumor antigen. We purified, cloned, and characterized 13 IgGs specific for several tumor-associated MUC1 epitopes with a wide range of binding affinities. These antibodies bind hypoglycosylated MUC1 on human cancer cell lines and tumor tissues but show no reactivity against fully-glycosylated MUC1 on normal cells and tissues. We found that several antibodies activate complement-mediated cytotoxicity and that T cells carrying chimeric antigen receptors with the antibody variable regions kill MUC1(+) target cells, express activation markers, and produce interferon gamma. Fully-human and tumor-specific, these antibodies are candidates for further testing and development as immunotherapeutic drugs.


Assuntos
Anticorpos/imunologia , Neoplasias da Mama/imunologia , Vacinas Anticâncer/imunologia , Mucina-1/imunologia , Adulto , Sequência de Aminoácidos , Afinidade de Anticorpos/imunologia , Sequência de Bases , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Vacinas Anticâncer/uso terapêutico , Linhagem Celular , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Epitopos/imunologia , Feminino , Células HEK293 , Humanos , Imunoglobulina G/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Células MCF-7 , Masculino , Pessoa de Meia-Idade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto Jovem
12.
Sci Rep ; 6(1): 11, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-28442704

RESUMO

ADAM10 and ADAM17 have been shown to contribute to the acquired drug resistance of HER2-positive breast cancer in response to trastuzumab. The majority of ADAM10 and ADAM17 inhibitor development has been focused on the discovery of compounds that bind the active site zinc, however, in recent years, there has been a shift from active site to secondary substrate binding site (exosite) inhibitor discovery in order to identify non-zinc-binding molecules. In the present work a glycosylated, exosite-binding substrate of ADAM10 and ADAM17 was utilized to screen 370,276 compounds from the MLPCN collection. As a result of this uHTS effort, a selective, time-dependent, non-zinc-binding inhibitor of ADAM10 with Ki = 883 nM was discovered. This compound exhibited low cell toxicity and was able to selectively inhibit shedding of known ADAM10 substrates in several cell-based models. We hypothesize that differential glycosylation of these cognate substrates is the source of selectivity of our novel inhibitor. The data indicate that this novel inhibitor can be used as an in vitro and, potentially, in vivo, probe of ADAM10 activity. Additionally, results of the present and prior studies strongly suggest that glycosylated substrate are applicable as screening agents for discovery of selective ADAM probes and therapeutics.


Assuntos
Proteína ADAM10/antagonistas & inibidores , Proteína ADAM17/antagonistas & inibidores , Proteína ADAM10/química , Proteína ADAM17/química , Linhagem Celular Tumoral , Bases de Dados de Compostos Químicos , Glicosilação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Relação Estrutura-Atividade , Especificidade por Substrato
13.
Biochemistry ; 54(29): 4462-74, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26129647

RESUMO

A shift to short-chain glycans is an observed change in mucin-type O-glycosylation in premalignant and malignant epithelia. Given the evidence that human galectin-3 can interact with mucins and also weakly with free tumor-associated Thomsen-Friedenreich (TF) antigen (CD176), the study of its interaction with MUC1 (glyco)peptides is of biomedical relevance. Glycosylated MUC1 fragments that carry the TF antigen attached through either Thr or Ser side chains were synthesized using standard Fmoc-based automated solid-phase peptide chemistry. The dissociation constants (Kd) for interaction of galectin-3 and the glycosylated MUC1 fragments measured by isothermal titration calorimetry decreased up to 10 times in comparison to that of the free TF disaccharide. No binding was observed for the nonglycosylated control version of the MUC1 peptide. The most notable feature of the binding of MUC1 glycopeptides to galectin-3 was a shift from a favorable enthalpy to an entropy-driven binding process. The comparatively diminished enthalpy contribution to the free energy (ΔG) was compensated by a considerable gain in the entropic term. (1)H-(15)N heteronuclear single-quantum coherence spectroscopy nuclear magnetic resonance data reveal contact at the canonical site mainly by the glycan moiety of the MUC1 glycopeptide. Ligand-dependent differences in binding affinities were also confirmed by a novel assay for screening of low-affinity glycan-lectin interactions based on AlphaScreen technology. Another key finding is that the glycosylated MUC1 peptides exhibited activity in a concentration-dependent manner in cell-based assays revealing selectivity among human galectins. Thus, the presentation of this tumor-associated carbohydrate ligand by the natural peptide scaffold enhances its affinity, highlighting the significance of model studies of human lectins with synthetic glycopeptides.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Galectina 3/química , Glicopeptídeos/química , Mucina-1/química , Animais , Ligação Competitiva , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Entropia , Humanos , Ligação Proteica
14.
J Biol Chem ; 289(31): 21591-604, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24958723

RESUMO

Although type IV collagen is heavily glycosylated, the influence of this post-translational modification on integrin binding has not been investigated. In the present study, galactosylated and nongalactosylated triple-helical peptides have been constructed containing the α1(IV)382-393 and α1(IV)531-543 sequences, which are binding sites for the α2ß1 and α3ß1 integrins, respectively. All peptides had triple-helical stabilities of 37 °C or greater. The galactosylation of Hyl(393) in α1(IV)382-393 and Hyl(540) and Hyl(543) in α1(IV)531-543 had a dose-dependent influence on melanoma cell adhesion that was much more pronounced in the case of α3ß1 integrin binding. Molecular modeling indicated that galactosylation occurred on the periphery of α2ß1 integrin interaction with α1(IV)382-393 but right in the middle of α3ß1 integrin interaction with α1(IV)531-543. The possibility of extracellular deglycosylation of type IV collagen was investigated, but no ß-galactosidase-like activity capable of collagen modification was found. Thus, glycosylation of collagen can modulate integrin binding, and levels of glycosylation could be altered by reduction in expression of glycosylation enzymes but most likely not by extracellular deglycosylation activity.


Assuntos
Colágeno Tipo IV/metabolismo , Integrina alfa2beta1/metabolismo , Integrina alfa3beta1/metabolismo , Melanoma/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Glicosilação , Humanos , Modelos Moleculares , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Molecules ; 19(6): 8571-88, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24959683

RESUMO

Matrix metalloproteinases (MMP) 2 and 9, the gelatinases, have consistently been associated with tumor progression. The development of gelatinase-specific probes will be critical for identifying in vivo gelatinoic activity to understand the molecular role of the gelatinases in tumor development. Recently, a self-assembling homotrimeric triple-helical peptide (THP), incorporating a sequence from type V collagen, with high substrate specificity to the gelatinases has been developed. To determine whether this THP would be suitable for imaging protease activity, 5-carboxyfluorescein (5FAM) was conjugated, resulting in 5FAM3-THP and 5FAM6-THP, which were quenched up to 50%. 5FAM6-THP hydrolysis by MMP-2 and MMP-9 displayed kcat/KM values of 1.5 × 104 and 5.4 × 103 M-1 s-1, respectively. Additionally 5FAM6-THP visualized gelatinase activity in gelatinase positive HT-1080 cells, but not in gelatinase negative MCF-7 cells. Furthermore, the fluorescence in the HT-1080 cells was greatly attenuated by the addition of a MMP-2 and MMP-9 inhibitor, SB-3CT, indicating that the observed fluorescence release was mediated by gelatinase proteolysis and not non-specific proteolysis of the THPs. These results demonstrate that THPs fully substituted with fluorophores maintain their substrate specificity to the gelatinases in human cancer cells and may be useful in in vivo molecular imaging of gelatinase activity.


Assuntos
Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Peptídeos/farmacocinética , Tomografia Óptica/métodos , Linhagem Celular Tumoral , Colágeno Tipo V/química , Fluoresceínas/química , Fluorescência , Corantes Fluorescentes/química , Humanos , Células MCF-7 , Microscopia Confocal , Microscopia de Fluorescência , Peptídeos/síntese química , Peptídeos/química
16.
Anal Biochem ; 449: 68-75, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24361716

RESUMO

ADAM17 (a disintegrin and metalloprotease 17) is believed to be a tractable target in various diseases, including cancer and rheumatoid arthritis; however, it is not known whether glycosylation of ADAM17 expressed in healthy cells differs from that found in diseased tissue and, if so, whether glycosylation affects inhibitor binding. We expressed human ADAM17 in mammalian and insect cells and compared their glycosylation, substrate kinetics, and inhibition profiles. We found that ADAM17 expressed in mammalian cells was more heavily glycosylated than its insect-expressed analog. To determine whether differential glycosylation modulates enzymatic activity, we performed kinetic studies with both ADAM17 analogs and various TNFα-based substrates. The mammalian form of ADAM17 exhibited 10- to 30-fold lower kcat values than the insect analog, while the KM was unaffected, suggesting that glycosylation of ADAM17 can potentially play a role in regulating enzyme activity in vivo. Finally, we tested ADAM17 forms for inhibition by several well-characterized inhibitors. Active-site zinc-binding small molecules did not exhibit differences between the two ADAM17 analogs, while a non-zinc-binding exosite inhibitor of ADAM17 showed significantly lower potency toward the mammalian-expressed analog. These results suggest that glycosylation of ADAM17 can affect cell signaling in disease and might provide opportunities for therapeutic intervention using exosite inhibitors.


Assuntos
Proteínas ADAM/química , Proteínas ADAM/metabolismo , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/genética , Proteína ADAM17 , Sequência de Aminoácidos , Animais , Clonagem Molecular , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glicosilação , Células HEK293 , Humanos , Cinética , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Methods Mol Biol ; 1081: 107-36, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24014437

RESUMO

Many biological interactions and functions are mediated by glycans, leading to the emerging importance of carbohydrate and glycoconjugate chemistry in the design of novel drug therapeutics. In addition to direct effects on biological activity, sugar addition appears to alter many physicochemical and pharmacological properties of the peptide backbone. Consequently, glycosylation has been often used to improve various less than optimal features of peptide drug leads.In order to study the effects that naturally occurring and/or nonnatural glycans have on peptide drug solubility, conformation, proteolytic resistance, membrane permeability, and toxicity, it is essential to have convenient synthetic access toward synthesis of glycopeptide analogs. The crucial step in the synthesis of glycopeptides is the introduction of the carbohydrate group. The preformed glycosyl amino acid building block is the most commonly employed approach used in glycopeptide synthesis.In this review, we will describe various synthetic approaches to prepare N- and O-glycopeptides bearing simple monosaccharides as a tool to improve peptide therapeutic efficacy by glycosylation.


Assuntos
Peptídeos/química , Preparações Farmacêuticas/química , Aminoácidos , Fluorenos , Glicopeptídeos/síntese química , Glicosilação , Monossacarídeos/química , Peptídeos/síntese química , Preparações Farmacêuticas/síntese química , Técnicas de Síntese em Fase Sólida
18.
J Biol Chem ; 288(31): 22871-9, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23779109

RESUMO

ADAM proteases are implicated in multiple diseases, but no drugs based on ADAM inhibition exist. Most of the ADAM inhibitors developed to date feature zinc-binding moieties that target the active site zinc, which leads to a lack of selectivity and off target toxicity. Targeting secondary substrate binding sites (exosites) can potentially work as an alternative strategy for drug discovery; however, there are only a few reports of potential exosites in ADAM protease structures. In the study presented here, we utilized a series of TNFα-based substrates to probe ADAM10 and 17 interactions with its canonical substrate to identify the structural features that determine ADAM protease substrate specificity. We found that noncatalytic domains of ADAM17 did not directly bind the substrates used in the study but affected the binding nevertheless, most likely because of steric hindrance. Additionally, noncatalytic domains of ADAM17 affected the size/shape of the carbohydrate-binding pocket contained within the catalytic domain of ADAM17. This suggests that noncatalytic domains of ADAM17 play a role in substrate specificity and might help explain differences in substrate repertoires of ADAM17 and its closest homologue, ADAM10. We also addressed the question of which substrate features can affect ADAM protease specificity. We found that all ADAM proteases tested (i.e., ADAM10, 12, and 17) significantly decreased activity when the TNFα-derived sequence was induced into α-helical conformation, suggesting that conformation plays a role in determining ADAM protease substrate specificity. These findings can help in the discovery of ADAM isoform- and substrate-specific inhibitors.


Assuntos
Proteínas ADAM/metabolismo , Proteínas ADAM/química , Proteína ADAM17 , Sequência de Aminoácidos , Domínio Catalítico , Dicroísmo Circular , Humanos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Especificidade por Substrato
19.
J Biol Chem ; 287(43): 36473-87, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22927435

RESUMO

A disintegrin and metalloprotease (ADAM) proteases are implicated in multiple diseases, but no drugs based on ADAM inhibition exist. Most of the ADAM inhibitors developed to date feature zinc-binding moieties that target the active site zinc, which leads to a lack of selectivity and off-target toxicity. We hypothesized that secondary binding site (exosite) inhibitors should provide a viable alternative to active site inhibitors. Potential exosites in ADAM structures have been reported, but no studies describing substrate features necessary for exosite interactions exist. Analysis of ADAM cognate substrates revealed that glycosylation is often present in the vicinity of the scissile bond. To study whether glycosylation plays a role in modulating ADAM activity, a tumor necrosis factor α (TNFα) substrate with and without a glycan moiety attached was synthesized and characterized. Glycosylation enhanced ADAM8 and -17 activities and decreased ADAM10 activity. Metalloprotease (MMP) activity was unaffected by TNFα substrate glycosylation. High throughput screening assays were developed using glycosylated and non-glycosylated substrate, and positional scanning was conducted. A novel chemotype of ADAM17-selective probes was discovered from the TPIMS library (Houghten, R. A., Pinilla, C., Giulianotti, M. A., Appel, J. R., Dooley, C. T., Nefzi, A., Ostresh, J. M., Yu, Y., Maggiora, G. M., Medina-Franco, J. L., Brunner, D., and Schneider, J. (2008) Strategies for the use of mixture-based synthetic combinatorial libraries. Scaffold ranking, direct testing in vivo, and enhanced deconvolution by computational methods. J. Comb. Chem. 10, 3-19; Pinilla, C., Appel, J. R., Borràs, E., and Houghten, R. A. (2003) Advances in the use of synthetic combinatorial chemistry. Mixture-based libraries. Nat. Med. 9, 118-122) that preferentially inhibited glycosylated substrate hydrolysis and spared ADAM10, MMP-8, and MMP-14. Kinetic studies revealed that ADAM17 inhibition occurred via a non-zinc-binding mechanism. Thus, modulation of proteolysis via glycosylation may be used for identifying novel, potentially exosite binding compounds. The newly described ADAM17 inhibitors represent research tools to investigate the role of ADAM17 in the progression of various diseases.


Assuntos
Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/química , Biblioteca de Peptídeos , Inibidores de Proteases/química , Fator de Necrose Tumoral alfa/química , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM10 , Proteína ADAM17 , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Glicosilação , Humanos , Hidrólise , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Especificidade por Substrato , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
Biochemistry ; 51(37): 7278-89, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22916968

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy and molecular modeling methods have been strategically combined to elucidate the molecular recognition features of the binding of threonine O-linked Thomsen-Friedenreich (TF) antigen to chimera-type avian galectin-3 (CG-3). Saturation transfer difference (STD) NMR experiments revealed the highest intensities for the H4 protons of both the ß-D-Galp and α-D-GalpNAc moieties, with 100 and 71% of relative STD, respectively. The methyl protons of the threonine residue exhibited a small STD effect, <15%, indicating that the interaction of the amino acid with the protein is rather transient. Two-dimensional transferred nuclear Overhauser effect spectroscopy NMR experiments and molecular modeling suggested some differences in conformer populations between the free and bound states. A dynamic binding mode for the TF antigen-CG-3 complex consisting of two poses has been deduced. In one pose, intermolecular interactions were formed between the terminal threonine residue and the receptor. In the second pose, intermolecular interactions involved the internal GalpNAc. The difference in the trend of some shifts in the heteronuclear single-quantum coherence titration spectra indicates some disparities in the binding interactions of CG-3 with lactose and TF antigen. The results obtained from this model of the avian orthologue of human galectin-3 will allow detailed interspecies comparison to give sequence deviations in phylogeny a structural and functional meaning. Moreover, the results indicate that the peptide scaffold presenting TF antigen could be relevant for binding and thus provides a possible route for the design of galectin-3 inhibitors with improved affinity and selectivity.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Galectina 3/química , Animais , Antígenos Glicosídicos Associados a Tumores/metabolismo , Proteínas Aviárias/química , Proteínas Aviárias/metabolismo , Aves/metabolismo , Galectina 3/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Filogenia , Ligação Proteica , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA