Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 46(3): 3429-3443, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38441802

RESUMO

Epigenetic aging clocks are computational models that predict age using DNA methylation information. Initially, first-generation clocks were developed to make predictions using CpGs that change with age. Over time, next-generation clocks were created using CpGs that relate to both age and health. Since existing next-generation clocks were constructed in blood, we sought to develop a next-generation clock optimized for prediction in cheek swabs, which are non-invasive and easy to collect. To do this, we collected MethylationEPIC data as well as lifestyle and health information from 8045 diverse adults. Using a novel simulated annealing approach that allowed us to incorporate lifestyle and health factors into training as well as a combination of CpG filtering, CpG clustering, and clock ensembling, we constructed CheekAge, an epigenetic aging clock that has a strong correlation with age, displays high test-retest reproducibility across replicates, and significantly associates with a plethora of lifestyle and health factors, such as BMI, smoking status, and alcohol intake. We validated CheekAge in an internal dataset and multiple publicly available datasets, including samples from patients with progeria or meningioma. In addition to exploring the underlying biology of the data and clock, we provide a free online tool that allows users to mine our methylomic data and predict epigenetic age.


Assuntos
Envelhecimento , Epigênese Genética , Humanos , Reprodutibilidade dos Testes , Ilhas de CpG , Envelhecimento/genética , Estilo de Vida
2.
Ageing Res Rev ; 87: 101922, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37004845

RESUMO

The restriction of calories, branched-chain amino acids, and methionine have all been shown to extend lifespan in model organisms. Recently, glycine was found to boost longevity in genetically heterogenous mice. This simple amino acid similarly extends lifespan in rats and improves health in mammalian models of age-related disease. While compelling data indicate that glycine is a pro-longevity molecule, divergent mechanisms may underlie its effects on aging. Glycine is abundant in collagen, a building block for glutathione, a precursor to creatine, and an acceptor for the enzyme glycine N-methyltransferase (GNMT). A review of the literature strongly implicates GNMT, which clears methionine from the body by taking a methyl group from S-adenosyl-L-methionine and methylating glycine to form sarcosine. In flies, Gnmt is required for reduced insulin/insulin-like growth factor 1 signaling and dietary restriction to fully extend lifespan. The geroprotector spermidine requires Gnmt to upregulate autophagy genes and boost longevity. Moreover, the overexpression of Gnmt is sufficient to extend lifespan and reduce methionine levels. Sarcosine, or methylglycine, declines with age in multiple species and is capable of inducing autophagy both in vitro and in vivo. Taken all together, existing evidence suggests that glycine prolongs life by mimicking methionine restriction and activating autophagy.


Assuntos
Glicina , Sarcosina , Ratos , Animais , Camundongos , Humanos , Glicina/metabolismo , Envelhecimento/metabolismo , Metionina/metabolismo , Longevidade , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/metabolismo , Racemetionina , Mamíferos/metabolismo
3.
Sci Rep ; 8(1): 3788, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491424

RESUMO

The NLRC4 inflammasome recognizes bacterial flagellin and components of the type III secretion apparatus. NLRC4 stimulation leads to caspase-1 activation followed by a rapid lytic cell death known as pyroptosis. NLRC4 is linked to pathogen-free auto-inflammatory diseases, suggesting a role for NLRC4 in sterile inflammation. Here, we show that NLRC4 activates an alternative cell death program morphologically similar to apoptosis in caspase-1-deficient BMDMs. By performing an unbiased genome-wide CRISPR/Cas9 screen with subsequent validation studies in gene-targeted mice, we highlight a critical role for caspase-8 and ASC adaptor in an alternative apoptotic pathway downstream of NLRC4. Furthermore, caspase-1 catalytically dead knock-in (Casp1 C284A KI) BMDMs genetically segregate pyroptosis and apoptosis, and confirm that caspase-1 does not functionally compete with ASC for NLRC4 interactions. We show that NLRC4/caspase-8-mediated apoptotic cells eventually undergo plasma cell membrane damage in vitro, suggesting that this pathway can lead to secondary necrosis. Unexpectedly, we found that DFNA5/GSDME, a member of the pore-forming gasdermin family, is dispensable for the secondary necrosis that follows NLRC4-mediated apoptosis in macrophages. Together, our data confirm the existence of an alternative caspase-8 activation pathway diverging from the NLRC4 inflammasome in primary macrophages.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 1/fisiologia , Caspase 8/fisiologia , Inflamassomos/metabolismo , Macrófagos/patologia , Animais , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Sistemas CRISPR-Cas , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Genoma , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
J Cell Biol ; 216(11): 3535-3549, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28887438

RESUMO

A propensity for rewiring genetic and epigenetic regulatory networks, thus enabling sustained cell proliferation, suppression of apoptosis, and the ability to evade the immune system, is vital to cancer cell propagation. An increased understanding of how this is achieved is critical for identifying or improving therapeutic interventions. In this study, using acute myeloid leukemia (AML) human cell lines and a custom CRISPR/Cas9 screening platform, we identify the H3K9 methyltransferase SETDB1 as a novel, negative regulator of innate immunity. SETDB1 is overexpressed in many cancers, and loss of this gene in AML cells triggers desilencing of retrotransposable elements that leads to the production of double-stranded RNAs (dsRNAs). This is coincident with induction of a type I interferon response and apoptosis through the dsRNA-sensing pathway. Collectively, our findings establish a unique gene regulatory axis that cancer cells can exploit to circumvent the immune system.


Assuntos
Inativação Gênica , Interferon Tipo I/metabolismo , Leucemia Mieloide Aguda/enzimologia , Proteínas Metiltransferases/metabolismo , Retroelementos , Apoptose , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Sobrevivência Celular , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Proteínas Metiltransferases/genética , Interferência de RNA , RNA de Cadeia Dupla/biossíntese , RNA de Cadeia Dupla/genética , Transdução de Sinais , Fatores de Tempo , Transfecção , Evasão Tumoral
5.
Nucleic Acids Res ; 43(2): 1189-203, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25550431

RESUMO

Delivery of siRNA is a key hurdle to realizing the therapeutic promise of RNAi. By targeting internalizing cell surface antigens, antibody-siRNA complexes provide a possible solution. However, initial reports of antibody-siRNA complexes relied on non-specific charged interactions and have not been broadly applicable. To assess and improve this delivery method, we built on an industrial platform of therapeutic antibodies called THIOMABs, engineered to enable precise covalent coupling of siRNAs. We report that such coupling generates monomeric antibody-siRNA conjugates (ARCs) that retain antibody and siRNA activities. To broadly assess this technology, we generated a battery of THIOMABs against seven targets that use multiple internalization routes, enabling systematic manipulation of multiple parameters that impact delivery. We identify ARCs that induce targeted silencing in vitro and extend tests to target prostate carcinoma cells following systemic administration in mouse models. However, optimal silencing was restricted to specific conditions and only observed using a subset of ARCs. Trafficking studies point to ARC entrapment in endocytic compartments as a limiting factor, independent of the route of antigen internalization. Our broad characterization of multiple parameters using therapeutic-grade conjugate technology provides a thorough assessment of this delivery technology, highlighting both examples of success as well as remaining challenges.


Assuntos
Anticorpos , RNA Interferente Pequeno/administração & dosagem , Animais , Anticorpos/genética , Anticorpos/imunologia , Anticorpos/metabolismo , Linhagem Celular , Endossomos/metabolismo , Camundongos , Neoplasias/genética , Engenharia de Proteínas , Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo
6.
Mol Neurodegener ; 2: 15, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17718916

RESUMO

BACKGROUND: A central event in Alzheimer's disease (AD) is the regulated intramembraneous proteolysis of the beta-amyloid precursor protein (APP), to generate the beta-amyloid (Abeta) peptide and the APP intracellular domain (AICD). Abeta is the major component of amyloid plaques and AICD displays transcriptional activation properties. We have taken advantage of AICD transactivation properties to develop a genetic screen to identify regulators of APP metabolism. This screen relies on an APP-Gal4 fusion protein, which upon normal proteolysis, produces AICD-Gal4. Production of AICD-Gal4 induces Gal4-UAS driven luciferase expression. Therefore, when regulators of APP metabolism are modulated, luciferase expression is altered. RESULTS: To validate this experimental approach we modulated alpha-, beta-, and gamma-secretase levels and activities. Changes in AICD-Gal4 levels as measured by Western blot analysis were strongly and significantly correlated to the observed changes in AICD-Gal4 mediated luciferase activity. To determine if a known regulator of APP trafficking/maturation and Presenilin1 endoproteolysis could be detected using the AICD-Gal4 mediated luciferase assay, we knocked-down Ubiquilin 1 and observed decreased luciferase activity. We confirmed that Ubiquilin 1 modulated AICD-Gal4 levels by Western blot analysis and also observed that Ubiquilin 1 modulated total APP levels, the ratio of mature to immature APP, as well as PS1 endoproteolysis. CONCLUSION: Taken together, we have shown that this screen can identify known APP metabolism regulators that control proteolysis, intracellular trafficking, maturation and levels of APP and its proteolytic products. We demonstrate for the first time that Ubiquilin 1 regulates APP metabolism in the human neuroblastoma cell line, SH-SY5Y.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA