Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5438, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521831

RESUMO

Cell homeostasis is perturbed when dramatic shifts in the external environment cause the physical-chemical properties inside the cell to change. Experimental approaches for dynamically monitoring these intracellular effects are currently lacking. Here, we leverage the environmental sensitivity and structural plasticity of intrinsically disordered protein regions (IDRs) to develop a FRET biosensor capable of monitoring rapid intracellular changes caused by osmotic stress. The biosensor, named SED1, utilizes the Arabidopsis intrinsically disordered AtLEA4-5 protein expressed in plants under water deficit. Computational modeling and in vitro studies reveal that SED1 is highly sensitive to macromolecular crowding. SED1 exhibits large and near-linear osmolarity-dependent changes in FRET inside living bacteria, yeast, plant, and human cells, demonstrating the broad utility of this tool for studying water-associated stress. This study demonstrates the remarkable ability of IDRs to sense the cellular environment across the tree of life and provides a blueprint for their use as environmentally-responsive molecular tools.


Assuntos
Proteínas de Arabidopsis/metabolismo , Técnicas Biossensoriais , Proteínas Intrinsicamente Desordenadas/metabolismo , Chaperonas Moleculares/metabolismo , Pressão Osmótica , Água/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação , Linhagem Celular Tumoral , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Expressão Gênica , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Cinética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Concentração Osmolar , Osteoblastos/citologia , Osteoblastos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Termodinâmica
2.
Plant Signal Behav ; 12(7): e1343777, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28650260

RESUMO

Late Embryogenesis Abundant (LEA) proteins comprise a heterogeneous group of proteins that accumulate to high levels in the dry seed and in vegetative plant tissues under water deficit. We recently reported that group 4 LEA proteins from Arabidopsis thaliana, regardless of their structural disorder prevalent in aqueous solution, are able to fold into α-helix when subjected to water deficit and/or macromolecular crowding environments. Interestingly, the ability to gain structure under water limiting conditions is circumscribed to the N-terminal conserved region. This environment- driven conformational plasticity has a functional impact because the conserved N-terminal region is necessary and sufficient to prevent the inactivation and/or aggregation of reporter enzymes, when they are subjected to partial dehydration or freeze-thaw treatments. In this addendum we present a broader analysis of the data and propose that the mechanism by which group 4 LEA proteins exert their chaperone-like activity occurs via a selection of particular LEA structural conformations favored by water deficit environments. In addition, we include further observations regarding the abundance and conservation of histidine residues in LEA proteins of this group, particularly at the C-terminal variable region, supporting the presence of an additional function in the same polypeptides as metal ion sequesters. The structural characteristics of group 4 LEA proteins together with their conceivable multifunctionality, a widespread feature in Intrinsically Disordered Proteins (IDPs), raises the possibility of using this set of proteins as a model to investigate the structure-function relationship of IDPs in plants.


Assuntos
Arabidopsis/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Conformação Proteica em alfa-Hélice , Estresse Fisiológico , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA