Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Mol Plant ; 16(12): 1893-1910, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37897037

RESUMO

Despite recent progress in crop genomics studies, the genomic changes brought about by modern breeding selection are still poorly understood, thus hampering genomics-assisted breeding, especially in polyploid crops with compound genomes such as common wheat (Triticum aestivum). In this work, we constructed genome resources for the modern elite common wheat variety Aikang 58 (AK58). Comparative genomics between AK58 and the landrace cultivar Chinese Spring (CS) shed light on genomic changes that occurred through recent varietal improvement. We also explored subgenome diploidization and divergence in common wheat and developed a homoeologous locus-based genome-wide association study (HGWAS) approach, which was more effective than single homoeolog-based GWAS in unraveling agronomic trait-associated loci. A total of 123 major HGWAS loci were detected using a genetic population derived from AK58 and CS. Elite homoeologous haplotypes (HHs), formed by combinations of subgenomic homoeologs of the associated loci, were found in both parents and progeny, and many could substantially improve wheat yield and related traits. We built a website where users can download genome assembly sequence and annotation data for AK58, perform blast analysis, and run JBrowse. Our work enriches genome resources for wheat, provides new insights into genomic changes during modern wheat improvement, and suggests that efficient mining of elite HHs can make a substantial contribution to genomics-assisted breeding in common wheat and other polyploid crops.


Assuntos
Pão , Triticum , Triticum/genética , Haplótipos/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Poliploidia , Genoma de Planta/genética
3.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373363

RESUMO

Crop genetic diversity is essential for adaptation and productivity in agriculture. A previous study revealed that poor allele diversity in wheat commercial cultivars is a major barrier to its further improvement. Homologs within a variety, including paralogs and orthologs in polyploid, account for a large part of the total genes of a species. Homolog diversity, intra-varietal diversity (IVD), and their functions have not been elucidated. Common wheat, an important food crop, is a hexaploid species with three subgenomes. This study analyzed the sequence, expression, and functional diversity of homologous genes in common wheat based on high-quality reference genomes of two representative varieties, a modern commercial variety Aikang 58 (AK58) and a landrace Chinese Spring (CS). A total of 85,908 homologous genes, accounting for 71.9% of all wheat genes, including inparalogs (IPs), outparalogs (OPs), and single-copy orthologs (SORs), were identified, suggesting that homologs are an important part of the wheat genome. The levels of sequence, expression, and functional variation in OPs and SORs were higher than that of IPs, which indicates that polyploids have more homologous diversity than diploids. Expansion genes, a specific type of OPs, made a great contribution to crop evolution and adaptation and endowed crop with special characteristics. Almost all agronomically important genes were from OPs and SORs, demonstrating their essential functions for polyploid evolution, domestication, and improvement. Our results suggest that IVD analysis is a novel approach for evaluating intra-genomic variations, and exploitation of IVD might be a new road for plant breeding, especially for polyploid crops, such as wheat.


Assuntos
Domesticação , Triticum , Triticum/genética , Melhoramento Vegetal , Poliploidia , Agricultura , Genoma de Planta , Evolução Molecular
4.
Genome Biol ; 22(1): 26, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33419466

RESUMO

BACKGROUND: Polyploidization and introgression are major events driving plant genome evolution and influencing crop breeding. However, the mechanisms underlying the higher-order chromatin organization of subgenomes and alien chromosomes are largely unknown. RESULTS: We probe the three-dimensional chromatin architecture of Aikang 58 (AK58), a widely cultivated allohexaploid wheat variety in China carrying the 1RS/1BL translocation chromosome. The regions involved in inter-chromosomal interactions, both within and between subgenomes, have highly similar sequences. Subgenome-specific territories tend to be connected by subgenome-dominant homologous transposable elements (TEs). The alien 1RS chromosomal arm, which was introgressed from rye and differs from its wheat counterpart, has relatively few inter-chromosome interactions with wheat chromosomes. An analysis of local chromatin structures reveals topologically associating domain (TAD)-like regions covering 52% of the AK58 genome, the boundaries of which are enriched with active genes, zinc-finger factor-binding motifs, CHH methylation, and 24-nt small RNAs. The chromatin loops are mostly localized around TAD boundaries, and the number of gene loops is positively associated with gene activity. CONCLUSIONS: The present study reveals the impact of the genetic sequence context on the higher-order chromatin structure and subgenome stability in hexaploid wheat. Specifically, we characterized the sequence homology-mediated inter-chromosome interactions and the non-canonical role of subgenome-biased TEs. Our findings may have profound implications for future investigations of the interplay between genetic sequences and higher-order structures and their consequences on polyploid genome evolution and introgression-based breeding of crop plants.


Assuntos
Cromossomos de Plantas , Genoma de Planta , Poliploidia , Triticum/genética , China , Cromatina , Elementos de DNA Transponíveis , Evolução Molecular , Genes de Plantas/genética , Melhoramento Vegetal , Translocação Genética
5.
Biol. Res ; 52: 19, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1011421

RESUMO

BACKGROUND: Recent studies indicate that circular RNAs (circRNAs) may play important roles in the regulation of plant growth and development. Plant roots are the main organs of nutrient and water uptake. However, whether circRNAs involved in the regulation of plant root growth remains to be elucidated. METHODS: LH9, XN979 and YN29 are three Chinese wheat varieties with contrasting root lengths. Here, the root circRNA expression profiles of LH9, XN979 and YN29 were examined by using high-throughput sequencing technology. RESULTS: Thirty-three and twenty-two differentially expressed circRNAs (DECs) were identified in the YN29-LH9 comparison and YN29-XN979 comparison, respectively. Among them, ten DECs coexisted in both comparisons. As the roots of both LH9 and XN979 were significantly larger and deeper than YN29, the ten DECs coexisting in the two comparisons were highly likely to be involved in the regulation of wheat root length. Moreover, three of the ten DECs have potential miRNA binding sites. Real-time PCR analysis showed that the expression levels of the potential binding miRNAs exhibited significant differences between the long root plants and the short root plants. CONCLUSIONS: The expression levels of some circRNAs exhibited significant differences in wheat varieties with contrasting root phenotypes. Ten DECs involved in the regulation of wheat root length were successfully identified in which three of them have potential miRNAs binding sites. The expression levels of putative circRNA-binding miRNAs were correlated with their corresponding circRNAs. Our results provide new clues for studying the potential roles of circRNAs in the regulation of wheat root length.


Assuntos
Triticum/crescimento & desenvolvimento , RNA/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Triticum/fisiologia , Regulação para Baixo/fisiologia , Regulação para Cima/fisiologia , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase em Tempo Real , RNA Circular
6.
J Proteome Res ; 17(7): 2256-2281, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29761697

RESUMO

Crops are often subjected to a combination of stresses in the field. To date, studies on the physiological and molecular responses of common wheat to a combination of osmotic and cold stresses, however, remain unknown. In this study, wheat seedlings exposed to osmotic-cold stress for 24 h showed inhibited growth, as well as increased lipid peroxidation, relative electrolyte leakage, and soluble sugar contents. iTRAQ-based quantitative proteome method was employed to determine the proteomic profiles of the roots and leaves of wheat seedlings exposed to osmotic-cold stress conditions. A total of 250 and 258 proteins with significantly altered abundance in the roots and leaves were identified, respectively, and the majority of these proteins displayed differential abundance, thereby revealing organ-specific differences in adaptation to osmotic-cold stress. Yeast two hybrid assay examined five pairs of stress/defense-related protein-protein interactions in the predicted protein interaction network. Furthermore, quantitative real-time PCR analysis indicated that abiotic stresses increased the expression of three candidate protein genes, i.e., TaGRP2, CDCP, and Wcor410c in wheat leaves. Virus-induced gene silencing indicated that three genes TaGRP2, CDCP, and Wcor410c were involved in modulating osmotic-cold stress in common wheat. Our study provides useful information for the elucidation of molecular and genetics bases of osmotic-cold combined stress in bread wheat.


Assuntos
Resposta ao Choque Frio , Pressão Osmótica , Proteínas de Plantas/análise , Proteômica/métodos , Plântula/química , Triticum/química , Pão , Cistationina beta-Sintase/genética , Inativação Gênica , Proteínas de Plantas/genética , Proteínas de Ligação a RNA/genética
7.
Sci Rep ; 7(1): 13601, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051560

RESUMO

Protein ubiquitination, which is a major post-translational modifications that occurs in eukaryotic cells, is involved in diverse biological processes. To date, large-scale profiling of the ubiquitome in common wheat has not been reported, despite its status as the major cereal crop in the world. Here, we performed the first ubiquitome analysis of the common wheat (Triticum aestivum L.) variety, Aikang 58. Overall, 433 lysine modification sites were identified in 285 proteins in wheat seedlings, and four putative ubiquitination motifs were revealed. In particular, 83 of the 285 ubiquitinated proteins had ubiquitination orthologs in Oryza sativa L., and Arabidopsis thaliana. Ubiquitylated lysines were found to have a significantly different preference for secondary structures when compared with the all lysines. In accordance with previous studies, proteins related to binding and catalytic activity were predicted to be the preferential targets of lysine ubiquitination. Besides, protein interaction network analysis reveals that diverse interactions are modulated by protein ubiquitination. Bioinformatics analysis revealed that the ubiquitinated proteins were involved in diverse biological processes. Our data provides a global view of the ubiquitome in common wheat for the first time and lays a foundation for exploring the physiological role of lysine ubiquitination in wheat and other plants.


Assuntos
Lisina/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Biocatálise , Cromatografia Líquida de Alta Pressão , Lisina/análise , Oryza/metabolismo , Peptídeos/análise , Proteínas de Plantas/química , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Mapas de Interação de Proteínas , Proteoma/análise , Plântula/metabolismo , Espectrometria de Massas em Tandem , Ubiquitinação
8.
BMC Plant Biol ; 13: 199, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24314021

RESUMO

BACKGROUND: Flowering time greatly influences the adaptation of wheat cultivars to diverse environmental conditions and is mainly controlled by vernalization and photoperiod genes. In wheat cultivars from the Yellow and Huai Valleys, which represent 60%-70% of the total wheat production in China, the large-scale genotyping of wheat germplasms has not yet been performed in terms of vernalization and photoperiod response alleles, limiting the use of Chinese wheat germplasms to a certain extent. RESULTS: In this study, 173 winter wheat cultivars and 51 spring wheat cultivars from China were used to identify allelic variations of vernalization and photoperiod genes as well as copy number variations of Ppd-B1 and Vrn-A1. Two new co-dominant markers were developed in order to more precisely examine Vrn-A1b, Vrn-B1a, and Vrn-B1b. Two novel alleles at the Vrn-B3 locus were discovered and were designated Vrn-B3b and Vrn-B3c. Vrn-B3b had an 890-bp insertion in the promoter region of the recessive vrn-B3 allele, and Vrn-B3c allele had 2 deletions (a 20-bp deletion and a 4-bp deletion) in the promoter region of the dominant Vrn-B3a allele. Cultivar Hemai 26 lacked the Vrn-A1 gene. RT-PCR indicated that the 890-bp insertion in the Vrn-B3b allele significantly reduced the transcription of the Vrn-B3 gene. Cultivars Chadianhong with the Vrn-B3b allele and Hemai 26 with a Vrn-A1-null allele possessed relatively later heading and flowering times compared to those of Yanzhan 4110, which harbored recessive vrn-B3 and vrn-A1 alleles. Through identification of photoperiod genes, 2 new polymorphism combinations were found in 6 winter wheat cultivars and were designated Hapl-VII and Hapl-VIII, respectively. Distribution of the vernalization and photoperiod genes indicated that all recessive alleles at the 4 vernalization response loci, truncated "Chinese Spring" Ppd-B1 allele at Ppd-B1 locus and Hapl-I at the Ppd-D1 locus were predominant in Chinese winter wheat cultivars. CONCLUSION: This study illustrated the distribution of vernalization and photoperiod genes and identified 2 new Vrn-B3 alleles, 1 Vrn-A1-null allele, and two new Ppd-D1 polymorphism combinations, using developed functional markers. Results of this study have the potential to provide useful information for screening relatively superior wheat cultivars for better adaptability and maturity.


Assuntos
Temperatura Baixa , Flores/genética , Flores/fisiologia , Genes de Plantas/genética , Triticum/genética , Triticum/fisiologia , Alelos , Pão , China , Variações do Número de Cópias de DNA/genética , Regulação da Expressão Gênica de Plantas , Genes Dominantes/genética , Loci Gênicos/genética , Marcadores Genéticos , Haplótipos/genética , Poliploidia , Estações do Ano , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA