Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542373

RESUMO

The glycoside hydrolase 13 (GH13) family is crucial for catalyzing α-glucoside linkages, and plays a key role in plant growth, development, and stress responses. Despite its significance, its role in plants remains understudied. This study targeted four GH13 subgroups in wheat, identifying 66 GH13 members from the latest wheat database (IWGSC RefSeq v2.1), including 36 α-amylase (AMY) members, 18 1,4-α-glucan-branching enzyme (SBE) members, 9 isoamylase (ISA) members, and 3 pullulanase (PU) members. Chromosomal distribution reveals a concentration of wheat group 7 chromosomes. Phylogenetic analysis underscores significant evolutionary distance variations among the subgroups, with distinct molecular structures. Replication events shaped subgroup evolution, particularly in regard to AMY members. Subcellular localization indicates AMY member predominance in extracellular and chloroplast regions, while others localize solely in chloroplasts, confirmed by the heterologous expression of TaSEB16 and TaAMY1 in tobacco. Moreover, 3D structural analysis shows the consistency of GH13 across species. Promoter cis-acting elements are suggested to be involved in growth, stress tolerance, and starch metabolism signaling. The RNA-seq data revealed TaGH13 expression changes under drought and submergence stress, and significant expression variation was observed between strong and weak gluten varieties during seed germination using quantitative real-time PCR (qRT-PCR), correlating with seed starch content. These findings demonstrate the pivotal role of GH13 family gene expression in wheat germination, concerning variety preference and environmental stress. Overall, this study advances the understanding of wheat GH13 subgroups, laying the groundwork for further functional studies.


Assuntos
Genoma de Planta , Triticum , Triticum/metabolismo , Filogenia , Glicosídeo Hidrolases/metabolismo , Amido/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834758

RESUMO

Radiation is widespread in nature, including ultraviolet radiation from the sun, cosmic radiation and radiation emitted by natural radionuclides. Over the years, the increasing industrialization of human beings has brought about more radiation, such as enhanced UV-B radiation due to ground ozone decay, and the emission and contamination of nuclear waste due to the increasing nuclear power plants and radioactive material industry. With additional radiation reaching plants, both negative effects including damage to cell membranes, reduction of photosynthetic rate and premature aging and benefits such as growth promotion and stress resistance enhancement have been observed. ROS (Reactive oxygen species) are reactive oxidants in plant cells, including hydrogen peroxide (H2O2), superoxide anions (O2•-) and hydroxide anion radicals (·OH), which may stimulate the antioxidant system of plants and act as signaling molecules to regulate downstream reactions. A number of studies have observed the change of ROS in plant cells under radiation, and new technology such as RNA-seq has molecularly revealed the regulation of radiative biological effects by ROS. This review summarized recent progress on the role of ROS in plant response to radiations including UV, ion beam and plasma, and may help to reveal the mechanisms of plant responses to radiation.


Assuntos
Peróxido de Hidrogênio , Raios Ultravioleta , Humanos , Espécies Reativas de Oxigênio/metabolismo , Superóxidos , Antioxidantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA