Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Dev Biol ; 12(3)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39311119

RESUMO

The NR2F family, including NR2F1, NR2F2, and NR2F6, belongs to the nuclear receptor superfamily. NR2F family members function as transcription factors and play essential roles in the development of multiple organs or tissues in mammals, including the central nervous system, veins and arteries, kidneys, uterus, and vasculature. In the central nervous system, NR2F1/2 coordinate with each other to regulate the development of specific brain subregions or cell types. In addition, NR2F family members are associated with various cancers, such as prostate cancer, breast cancer, and esophageal cancer. Nonetheless, the roles of the NR2F family in the development and diseases of the lung have not been systematically summarized. In this review, we mainly focus on the lung, including recent findings regarding the roles of the NR2F family in development, physiological function, and cancer.

2.
Sci Adv ; 7(11)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33712456

RESUMO

Traumatic brain injury (TBI) leads to high mortality rate. We aimed to identify the key cytokines favoring TBI repair and found that patients with TBI with a better outcome robustly increased concentrations of macrophage colony-stimulating factor, interleukin-6, and transforming growth factor-ß (termed M6T) in cerebrospinal fluid or plasma. Using TBI mice, we identified that M2-like macrophage, microglia, and endothelial cell were major sources to produce M6T. Together with the in vivo tracking of mCherry+ macrophages in zebrafish models, we confirmed that M6T treatment accelerated blood-borne macrophage infiltration and polarization toward a subset of tissue repair macrophages that expressed similar genes as microglia for neuroprotection, angiogenesis and cell migration. M6T therapy in TBI mice and zebrafish improved neurological function while blocking M6T-exacerbated brain injury. Considering low concentrations of M6T in some patients with poor prognostic, M6T treatment might repair TBI via generating a previously unidentified subset of tissue repair macrophages.


Assuntos
Lesões Encefálicas Traumáticas , Fator Estimulador de Colônias de Macrófagos , Animais , Humanos , Interleucina-6/genética , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta , Peixe-Zebra
3.
Stem Cell Reports ; 14(4): 614-630, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32220331

RESUMO

Hematopoietic stem cells (HSCs) and skeletal stem cells (SSCs) cohabit in the bone marrow. KITL (C-KIT ligand) from LEPR+ adult bone marrow stromal cells is pivotal for HSC maintenance. In contrast, it remains unclear whether KITL/C-KIT signaling also regulates SSCs. Here, we lineage traced C-KIT+ cells and found that C-KIT was expressed by fetal, but not postnatal skeletal progenitors. Fetal C-KIT+ cells gave rise to 20% of LEPR+ stromal cells in adult bone marrow, forming nearly half of all osteoblasts. Disruption of mTOR signaling in fetal C-KIT+ cells impaired bone formation. Notably, conditional deletion of Kitl from PRX1+ fetal bone marrow stromal cells, but not LEPR+ adult bone marrow stromal cells, significantly increased bone formation. Thus, our work identified C-KIT+ skeletal progenitors as an important source of bones formed during development.


Assuntos
Osso e Ossos/citologia , Feto/citologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Células-Tronco/citologia , Adipócitos/metabolismo , Animais , Animais Recém-Nascidos , Desenvolvimento Ósseo , Células da Medula Óssea/metabolismo , Linhagem da Célula , Condrócitos/citologia , Condrócitos/metabolismo , Deleção de Genes , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Transdução de Sinais , Fator de Células-Tronco/metabolismo , Transcriptoma/genética
4.
Cell Rep ; 27(5): 1567-1578.e5, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31042481

RESUMO

In vertebrates, hematopoiesis occurring in different niches is orchestrated by intrinsic and extrinsic regulators. Previous studies have revealed numerous linear and planar regulatory mechanisms. However, a multi-dimensional transcriptomic atlas of any given hematopoietic organ has not yet been established. Here, we use multiple RNA sequencing (RNA-seq) approaches, including cell type-specific, temporal bulk RNA-seq, in vivo GEO-seq, and single-cell RNA-seq (scRNA-seq), to characterize the detailed spatiotemporal transcriptome during hematopoietic stem and progenitor cell (HSPC) expansion in the caudal hematopoietic tissue (CHT) of zebrafish. Combinatorial expression profiling reveals that, in the CHT niche, HSPCs and their neighboring supporting cells are co-regulated by shared signaling pathways and intrinsic factors, such as integrin signaling and Smchd1. Moreover, scRNA-seq analysis unveils the strong association between cell cycle status and HSPC differentiation. Taken together, we report a global transcriptome landscape that provides valuable insights and a rich resource to understand HSPC expansion in an intact vertebrate hematopoietic organ.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/citologia , Transcriptoma , Animais , Células-Tronco Hematopoéticas/classificação , Células-Tronco Hematopoéticas/metabolismo , RNA-Seq , Transdução de Sinais , Análise de Célula Única , Nicho de Células-Tronco , Peixe-Zebra
5.
Nat Genet ; 51(4): 728-738, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30778223

RESUMO

Characterizing the stem cells responsible for lung repair and regeneration is important for the treatment of pulmonary diseases. Recently, a unique cell population located at the bronchioalveolar-duct junctions has been proposed to comprise endogenous stem cells for lung regeneration. However, the role of bronchioalveolar stem cells (BASCs) in vivo remains debated, and the contribution of such cells to lung regeneration is not known. Here we generated a genetic lineage-tracing system that uses dual recombinases (Cre and Dre) to specifically track BASCs in vivo. Fate-mapping and clonal analysis showed that BASCs became activated and responded distinctly to different lung injuries, and differentiated into multiple cell lineages including club cells, ciliated cells, and alveolar type 1 and type 2 cells for lung regeneration. This study provides in vivo genetic evidence that BASCs are bona fide lung epithelial stem cells with deployment of multipotency and self-renewal during lung repair and regeneration.


Assuntos
Bronquíolos/fisiologia , Líquido da Lavagem Broncoalveolar/citologia , Pulmão/fisiologia , Células-Tronco Multipotentes/fisiologia , Regeneração/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Células Cultivadas , Células Epiteliais/fisiologia , Genótipo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA