Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Insights Imaging ; 15(1): 87, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523188

RESUMO

OBJECTIVES: The purpose of this study was to investigate the prognostic significance of radiomics in conjunction with hematological parameters in relation to the overall survival (OS) of individuals diagnosed with esophageal squamous cell carcinoma (ESCC) following definitive chemoradiotherapy (dCRT). METHODS: In this retrospective analysis, a total of 122 patients with locally advanced ESCC were included. These patients were randomly assigned to either the training cohort (n = 85) or the validation cohort (n = 37). In the training group, the least absolute shrinkage and selection operator (LASSO) regression was utilized to choose the best radiomic features for calculating the Rad-score. To develop a nomogram model, both univariate and multivariate analyses were conducted to identify the clinical factors and hematologic parameters that could predict the OS. The performance of the predictive model was evaluated using the C-index, while the accuracy was assessed through the calibration curve. RESULTS: The Rad-score was calculated by selecting 10 radiomic features through LASSO regression. OS was predicted independently by neutrophil-to-monocyte ratio (NMR) and Rad-score according to the results of multivariate analysis. Patients who had a Rad-score > 0.47 and an NMR > 9.76 were at a significant risk of mortality. A nomogram was constructed using the findings from the multivariate analysis. In the training cohort, the nomogram had a C-index of 0.619, while in the validation cohort, it was 0.573. The model's accuracy was demonstrated by the calibration curve, which was excellent. CONCLUSION: A prognostic model utilizing radiomics and hematologic parameters was developed, enabling the prediction of OS in patients with ESCC following dCRT. CRITICAL RELEVANCE STATEMENT: Patients with esophageal cancer who underwent definitive chemoradiotherapy may benefit from including CT radiomics in the nomogram model. KEY POINTS: • Predicting the prognosis of ESCC patients before treatment is particularly important. • Patients with a Rad-score > 0.47 and neutrophil-to-monocyte ratio > 9.76 had a high risk of mortality. • CT-based radiomics nomogram model could be used to predict the survival of patients.

3.
J Invest Surg ; 37(1): 2301081, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38224012

RESUMO

OBJECTIVE: Gene mutations in tumor cells can lead to several unique metabolic phenotypes, which are crucial for the proliferation of cancer cells. EGFR mutation (EGFR-mt) is the main oncogenic driving mutation in lung adenocarcinoma (LUAD). HIF-1 α and PKM2 are two key metabolic regulatory proteins that can form a feedback loop and promote cancer growth by promoting glycolysis. Here, the linkage between EGFR mutational status and HIF-1α/PKM2 feedback loop in LUAD were evaluated. METHODS: Retrospective study were performed on LUAD patients (n = 89) undergoing first-time therapeutic surgical resection. EGFR mutation was analyzed by real-time PCR. Immunohistochemistry was used to measure the expressions of HIF-1α and PKM2. RESULTS: We found that the protein expressions of HIF-1α and PKM2 were significantly higher in LUAD than normal lung tissues. In adenocarcinomas, the two protein expressions were both correlated with worse pTNM stage. Moreover, the correlation between the proteins of HIF-1α/PKM2 feedback loop and the EGFR mutational status were also analyzed. We found that EGFR-mt tumors showed higher HIF-1α and PKM2 proteins compared to tumors with EGFR wild-type. Meanwhile, HIF-1α expression was significantly correlated with higher pTNM stage, and PKM2 showed a similar trend, only in EGFR-mutated tumors. The expression of HIF-1α was positively correlated with PKM2 in LUAD, furthermore, this correlation was mainly in patients with EGFR-mt. CONCLUSION: Different expression and clinical features of HIF-1α/PKM2 feedback loop was existed between LUAD and normal lung tissues, especially in EGFR mutational tumors, supporting the relationship between EGFR mutation and the key related proteins of aerobic glycolysis (HIF-1α and PKM2) in lung adenocarcinomas.


Assuntos
Adenocarcinoma de Pulmão , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Pulmonares , Piruvato Quinase , Humanos , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Receptores ErbB/genética , Retroalimentação , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Piruvato Quinase/genética
4.
Ecotoxicol Environ Saf ; 270: 115868, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142590

RESUMO

Ochratoxin A (OTA) is a mycotoxin commonly found in several food commodities worldwide with potential nephrotoxic, hepatotoxic and carcinogenic effects. We previously showed for the first time that OTA treatment enhanced glycolysis in human gastric epithelium (GES-1) cells in vitro. Here, we found that OTA exposure activated inflammatory responses, evidenced by increasing of NF-κB signaling pathway-related protein (p-p65 and p-IκBα) expressions and elevating of inflammatory cytokine (IL-1ß and IL-6) mRNA expressions in GES-1 cells. To elucidate the role of glycolysis in inflammatory effects triggered by OTA, we pretreated GES-1 cells with glycolysis inhibitor (2-deoxy-D-glucose, 2-DG) before OTA exposure. The result showed that 2-DG reduced the protein expressions of p-p65 and p-IκBα and alleviated the mRNA expressions of inflammatory cytokines in OTA-treated GES-1 cells. Furthermore, OTA activated the mTOR/HIF-1α pathway by increasing the protein expressions of p-mTOR, p-eIF4E and HIF-1α, and inhibition of mTOR with rapamycin or silencing HIF-1α with siRNA significantly attenuated OTA-enhanced glycolysis by reducing glycolysis related genes and thereby decreasing inflammatory effects of GES-1 cells. These results demonstrate that OTA activates inflammatory responses in GES-1 cells and this is controlled by mTOR/HIF-1α pathway-mediated glycolysis enhancement. Our findings provide a novel mechanistic view into OTA-induced gastric cytotoxicity.


Assuntos
Ocratoxinas , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Inibidor de NF-kappaB alfa , Linhagem Celular , Serina-Treonina Quinases TOR/genética , Glicólise , RNA Mensageiro , Epitélio
5.
J Neuropathol Exp Neurol ; 83(1): 11-19, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-37952116

RESUMO

AMP-activated protein kinase (AMPK) is a sensor of energy status that maintains cellular energy homeostasis. Activation of AMPK enhances the expression of proliferator-activated receptor γ coactivator 1α (PGC1-α) and subsequently activates mitochondrial transcription factor A (TFAM) to regulate mitochondrial oxidative respiratory function. The possible functions of AMPK, p-AMPK, PGC-1α, and TFAM and their interactions in astrocytomas are not known. Here, the levels, clinicopathological characteristics, and prognostic potential of AMPK, p-AMPK, PGC-1α, and TFAM expression levels in astrocytomas were evaluated. The results showed that levels of AMPK, p-AMPK, PGC-1α, and TFAM expression was increased in astrocytomas. Strong correlations were observed between AMPK, p-AMPK, PGC-1α, and TFAM expression in patients with astrocytomas. The analysis indicated that the levels of AMPK, p-AMPK, PGC-1α, and TFAM were associated with the survival. AMPK levels, tumor grade, and age were independent prognostic factors predicting poor outcomes in patients with astrocytoma. Together, these results indicate that these 4 targets may play a crucial role in the progression and prognosis of human astrocytomas and that AMPK may represent a potential therapeutic target.


Assuntos
Proteínas Quinases Ativadas por AMP , Astrocitoma , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Prognóstico , Mitocôndrias/metabolismo , Astrocitoma/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Mitocondriais/metabolismo
6.
Biomark Res ; 11(1): 44, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095586

RESUMO

BACKGROUND: Definitive chemoradiotherapy (dCRT) is a standard treatment option for locally advanced stage inoperable esophageal squamous cell carcinoma (ESCC). Evaluating clinical outcome prior to dCRT remains challenging. This study aimed to investigate the predictive power of computed tomography (CT)-based radiomics combined with genomics for the treatment efficacy of dCRT in ESCC patients. METHODS: This retrospective study included 118 ESCC patients who received dCRT. These patients were randomly divided into training (n = 82) and validation (n = 36) groups. Radiomic features were derived from the region of the primary tumor on CT images. Least absolute shrinkage and selection operator (LASSO) regression was conducted to select optimal radiomic features, and Rad-score was calculated to predict progression-free survival (PFS) in training group. Genomic DNA was extracted from formalin-fixed and paraffin-embedded pre-treatment biopsy tissue. Univariate and multivariate Cox analyses were undertaken to identify predictors of survival for model development. The area under the receiver operating characteristic curve (AUC) and C-index were used to evaluate the predictive performance and discriminatory ability of the prediction models, respectively. RESULTS: The Rad-score was constructed from six radiomic features to predict PFS. Multivariate analysis demonstrated that the Rad-score and homologous recombination repair (HRR) pathway alterations were independent prognostic factors correlating with PFS. The C-index for the integrated model combining radiomics and genomics was better than that of the radiomics or genomics models in the training group (0.616 vs. 0.587 or 0.557) and the validation group (0.649 vs. 0.625 or 0.586). CONCLUSION: The Rad-score and HRR pathway alterations could predict PFS after dCRT for patients with ESCC, with the combined radiomics and genomics model demonstrating the best predictive efficacy.

7.
Int J Radiat Oncol Biol Phys ; 115(2): 382-394, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36167753

RESUMO

PURPOSE: Definitive chemoradiotherapy (dCRT) is a standard-of-care for locally advanced unresectable esophageal squamous cell carcinoma (ESCC). However, even in individuals treated with the same dCRT regimen, differences in the local control rate and radiation-induced thoracic toxicity exist (radiation-induced esophagitis [RIE]). METHODS AND MATERIALS: Here, we describe a comprehensive genomic evaluation of pretreatment tumor tissue samples from 183 patients with ESCC using targeted sequencing of 474 cancer-related genes. The association between endpoints (progression-free survival [PFS], overall survival, locoregional relapse-free survival, distant metastasis-free survival), toxicity (RIE) and genomic features, including altered pathways and the mutational signature, was analyzed. An independent cohort of 84 stage II-III patients with ESCC was used for validation. RESULTS: Gene alterations in the cell cycle pathway were identified in 87% of cases. Other frequently altered pathways included PI3K-AKT (45.9%), NOTCH (38.3%), NRF2 (36.6%), RKT-RAS (28.4%), and homologous recombination repair (HRR; 20.2%). HRR pathway alterations correlated with shortened PFS (mutation vs wild-type: 9.00 vs 14.40 months, hazard ratio, 2.10; 95% confidence interval, 1.29-3.44), while altered RTK-RAS pathways were correlated with worse overall survival in patients with ESCC treated with chemoradiotherapy (mutation vs wild-type: 23.70 vs 33.50 months; hazard ratio, 1.65; 95% confidence interval, 1.01-2.69). Furthermore, enrichment of apolipoprotein B mRNA editing enzyme, catalytic polypeptide (APOBEC) signatures (signatures 2 and 13) was identified in ESCC tumors with altered HRR pathways. High APOBEC signatures and an altered HRR pathway were correlated with poor prognoses in dCRT-treated ESCC. Moreover, the APOBEC signature and/or the presence of HRR pathway alterations were associated with poor PFS and overall survival, which was validated in an independent whole exome sequence cohort. Notably, the altered HRR pathway was also associated with high-grade RIE toxicity in patients with ESCC. CONCLUSIONS: Collectively, our results support the use of comprehensive genomic profiling to guide treatment and minimize RIE in patients with ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Esofagite , Humanos , Carcinoma de Células Escamosas do Esôfago/terapia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Recidiva Local de Neoplasia/tratamento farmacológico , Quimiorradioterapia/efeitos adversos , Mutação , Prognóstico
8.
Toxicology ; 479: 153309, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36058351

RESUMO

Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium species that greatly threatens human health. We previously showed that OTA induced cycle arrest, apoptosis and autophagy in human gastric epithelium cells (GES-1). However, the mechanism underlying these effects is still unclear. Here, we showed that OTA exposure increased the expression of endoplasmic reticulum (ER) stress indicators (GRP78, PERK, ATF6, eIF2α, and CHOP), suggesting the activation of the unfolded protein response pathway. 4-phenylbutyric acid (4-PBA), an ER stress-specific inhibitor, attenuated OTA-induced loss of cell viability and apoptosis in GES-1 cells. It also attenuated the G2 phase arrest and autophagy induced by OTA, as evidenced by upregulated G2 phase-related proteins (Cdc2, Cdc25C, and cyclinB1) and downregulated autophagy markers (LC3B and Beclin-1). Moreover, OTA was found to increase ROS generation, and the inhibition of ROS formation by N-acetylcysteine (NAC), an ROS inhibitor, attenuated OTA-induced ER stress and subsequent apoptosis, cell cycle arrest, and autophagy. Collectively, these results suggest that the ROS-mediated ER stress pathway contributes to the OTA toxin-induced cytotoxicity in GES-1 cells. This study offers new insights into the molecular mechanisms underlying OTA toxicity in gastric cells.


Assuntos
Estresse do Retículo Endoplasmático , Ocratoxinas , Acetilcisteína/farmacologia , Apoptose , Proteína Beclina-1 , Epitélio , Humanos , Ocratoxinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo
9.
Front Oncol ; 12: 899055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847930

RESUMO

Objective: The study aimed to summarize the morphological characteristics of low-grade gastric intraepithelial neoplasia (LGIN) and explore its outcomes and risk factors. Additionally, it aimed to screen the core different expression genes (DEGs) of high-grade gastric intraepithelial neoplasia (HGIN) using bioinformatics methods to identify biomarkers for early gastric cancer outcomes. Methods: The clinical and pathological data of 449 patients with LGIN in the endoscopy center of the Second Hospital of Hebei Medical University from June 2013 to September 2018 were collected for retrospective analysis. The GSE130823 and GSE55696 data sets were selected from the Gene Expression Omnibus database, and the GEO2R tool was used to screen DEGs in HGIN and chronic gastritis tissue types. A DEG functional enrichment analysis was conducted using the Database for Annotation, Visualization, and Integrated Discovery. The STRING database was utilized to create a protein-protein interaction network, and the CytoHubba plug-in was used to screen the key genes of HGIN. Results: The incidence of LGIN increased with age, and most of the patients were aged between 45-59 years (P = 0.048). Lesions were found mainly in the cardia, mostly in people aged 60 (P < 0.05). Progression occurred in 42 of 449 patients, with a 9.4% rate of cancer development. Foci larger than 10 mm, ulcerative lesions, and an Helicobacter pylori-positive result were factors affecting the outcome of LGIN (P < 0.05). Seven core genes of HGIN were screened, including MYC, SOX2, CDX2, TBX3, KRT7, CDKN2A, and MUC5AC. Conclusion: The patients with LGIN reflected the potential for developing cancer. A magnifying gastroscope can contribute to the detection of early gastric cancer. Additionally, the MYC, CDX2, and TBX3 genes may act as specific biomarkers of HGIN.

10.
Front Oncol ; 12: 863715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646640

RESUMO

Due to the widespread use of tyrosine kinase inhibitors (TKIs), which have largely supplanted cytotoxic chemotherapy as the first-line therapeutic choice for patients with advanced non-small cell lung cancer (NSCLC) who have oncogene driver mutations, advanced NSCLC patients with oncogene driver mutations had much long median survival. However, TKIs' long-term efficacy is harmed by resistance to them. TKIs proved to have a limited potential to permeate cerebrospinal fluid (CSF) as well. Only a small percentage of plasma levels could be found in CSF at usual doses. Therefore, TKIs monotherapy may have a limited efficacy in individuals with brain metastases. Radiation has been demonstrated to reduce TKIs resistance and disrupt the blood-brain barrier (BBB). Previous trials have shown that local irradiation for bone metastases might improve symptoms, in addition, continuous administration of TKIs combined with radiotherapy was linked with beneficial progression-free survival (PFS) and overall survival (OS) for oligometastasis or bone metastasis NSCLC with oncogene driver mutations. The above implied that radiotherapy combined with targeted therapy may have a synergistic impact in patients with advanced oncogene driver-mutated NSCLC. The objective of this article is to discuss the value of radiotherapy in the treatment of those specific individuals.

11.
Oncol Lett ; 22(6): 849, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34733367

RESUMO

Due to the high incidence of colorectal cancer worldwide, the underlying molecular mechanisms have been extensively investigated. The Wnt/ß-catenin signaling pathway plays a key role in the carcinogenesis of colorectal adenoma. In addition, the high mobility group AT-hook 2 (HMGA2) protein, which is involved in several biological processes, such as proliferation, differentiation, transformation and metastasis, is expressed at significantly high levels in colorectal cancer tissues compared with adjacent normal tissues. Currently, the role of HMGA2 in the carcinogenesis of sporadic colorectal tubular adenoma remains unclear. The downstream Wnt/ß-catenin signaling molecule, T-cell factor/lymphoid enhancing factor (TCF/LEF), shares a similar domain with HMGA2, which enhances ß-catenin transcriptional activity and TCF/LEF binding. Thus, the present study investigated the association between HMGA2 and the Wnt/ß-catenin signaling pathway, and their role in the carcinogenesis of sporadic colorectal tubular adenoma via immunohistochemistry, siRNA, quantitative PCR and western blot analyses. The results demonstrated that the positive rate of HMGA2 expression gradually increased during tumor progression. Furthermore, HMGA2 expression was positively correlated with Wnt/ß-catenin signaling protein expression [Wnt, ß-catenin, cyclin-dependent kinase 4 (CDK4) and cyclin D1], suggesting its involvement in the carcinogenesis of sporadic colorectal tubular adenoma and its potential to synergistically interact with the Wnt/ß-catenin signaling pathway. HMGA2 knockdown in the human colorectal cancer cell line, HCT 116 decreased ß-catenin expression and its downstream targets, CDK4 and cyclin D1. Furthermore, silencing of Wnt or ß-catenin decreased HMGA2 expression. Taken together, the results of the present study suggest the coordinated regulation of HMGA2 and the Wnt/ß-catenin signaling pathway in the carcinogenesis of sporadic colorectal tubular adenoma.

12.
Toxicol Lett ; 333: 232-241, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32835834

RESUMO

Ochratoxin A (OTA) is a ubiquitous mycotoxin with potential nephrotoxic, hepatotoxic and immunotoxic effects. We previously demonstrated that OTA could cause mitochondrial function disturbance in GES-1 cells in vitro, which lead to the presumption that the glucose metabolism of GES-1 cells will be altered by OTA. Therefore in the present study, we explored the toxicity of OTA on glucose metabolism of GES-1 cells and the molecular mechanism. We found that OTA could induce aerobic glycolysis, evidenced shown by increase of glucose consumption, lactate production and cellular ATP concentration. We further detected expressions of GLUT1 and glycolytic enzymes including HK2, PFK1, PKM2 and LDHA as well as tricarboxylic acid (TCA) cycle-associated enzymes including IDH1, OGDH and CS. The results showed that expression of GLUT1 as well as the activities and expressions of HK2, PFK1 and LDHA were significantly increased while IDH1 and OGDH were reduced by OTA. As to PKM2, western blot showed that OTA could elevated the phospho-PKM2 Ser37 protein level and induce the nuclear accumulation of PKM2, which was further supported by immunofluorescence analyses, in addition, pyruvate kinase activity was reduced by OTA. In conclusion, these findings suggest that OTA exposure induces the metabolic shift from oxidative phosphorylation to aerobic glycolysis via regulating the activities and expressions of glycolysis and TCA-cycle associated molecules in GES-1 cells.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Células Epiteliais/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Glucose/metabolismo , Ocratoxinas/toxicidade , Linhagem Celular , Ciclo do Ácido Cítrico/efeitos dos fármacos , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Fosforilação Oxidativa/efeitos dos fármacos
13.
Oncol Lett ; 20(2): 1685-1694, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32724411

RESUMO

Centrosomal protein 55 (CEP55) is a member of the centrosomal-associated protein family and participates in the regulation of cytokinesis during cell mitosis. However, aberrant CEP55 protein expression has been observed in human tumors. In addition, CEP55 regulates the biological functions of tumors by inducing the Akt pathway and upregulating forkhead box protein M1 (FoxM1) and matrix metalloproteinase-2 (MMP-2). In the present study, the levels, clinicopathological features and prognostic potential of CEP55, phosphorylated Akt (p-Akt), FoxM1 and MMP-2 in astrocytoma were evaluated. CEP55, p-Akt, FoxM1 and MMP-2 levels were examined in 27 normal brain tissues and 262 astrocytoma tissues by using immunohistochemistry. Furthermore, Kaplan-Meier analysis and Cox proportional hazards models were applied to predict the prognosis of patients with astrocytoma. The results indicated that expression levels of CEP55 and other proteins were elevated in human astrocytoma compared with those in normal brain tissue. The levels of the selected proteins were increased as the tumor grade increased. Furthermore, CEP55 expression was positively correlated with p-Akt, FoxM1 and MMP-2 levels in astrocytoma. Overall survival analysis revealed that patient prognosis was associated with CEP55, p-Akt, FoxM1 and MMP-2 levels, as well as with the tumor grade and patient age. Furthermore, CEP55, FoxM1, tumor grade and patient age were independent prognostic factors in astrocytoma according to multivariate analysis. Taken together, the present results suggested that CEP55, p-Akt, FoxM1 and MMP-2 have crucial roles in the progression and prognosis of human astrocytoma and that CEP55 and FoxM1 may be potential therapeutic targets.

14.
Cell Death Dis ; 11(5): 367, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409702

RESUMO

Sunitinib has been used as the main therapy to treat the metastatic clear cell renal cell carcinoma (ccRCC) as it could function via suppressing the tumor growth and angiogenesis. Yet most ccRCC tumors may still regrow due to the development of sunitinib-resistance, and detailed mechanisms remain to be further investigated. The angiopoietin family includes angiopoietin-1 and angiopoietin-2 (ANGPT-1 and -2). It was reported that estradiol regulates expression of ANGPT-1, but not ANGPT-2, through estrogen receptor α (ERα) in an experimental stroke model. To date, there is no finding to link the E2/ER signal on regulating ANGPT-2. Our study is the first to explore (i) how estrogen receptor ß (ERß) can up-regulate ANGPT-2 in RCC cells, and (ii) how ERß-increased ANGPT-2 can promote the HUVEC tube formation and reduce sunitinib sensitivity. Mechanistic studies revealed that ERß could function via transcriptional regulation of the cytokine ANGPT-2 in the ccRCC cells. We found the up-regulated ANGPT-2 of RCC cells could then increase the Tie-2 phosphorylation to promote the angiogenesis and increase sunitinib treatment resistance of endothelial cells. In addition to the endothelial cell tube formation and aortic ring assay, preclinical studies with a mouse RCC model also confirmed the finding. Targeting this newly identified ERß/ANGPT-2/Tie-2 signaling pathway with the FDA-approved anti-estrogen, Faslodex, may help in the development of a novel combined therapy with sunitinib to better suppress the ccRCC progression.


Assuntos
Angiopoietina-2/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Receptor beta de Estrogênio/metabolismo , Sunitinibe/farmacologia , Animais , Carcinoma de Células Renais/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Receptor beta de Estrogênio/genética , Estrogênios/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/genética , Camundongos
15.
Toxicol Lett ; 313: 150-158, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276768

RESUMO

Ochratoxin A (OTA), one of the most abundant food-contaminating mycotoxins, is a possible carcinogen to humans. We previously demonstrated that long-term (40 weeks) OTA exposure induces the malignant transformation of human gastric epithelium cells (GES-1) in vitro. However, the specific mechanism underlying OTA-induced gastric carcinogenesis is complex. In the present study, we used 2-DE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF MS) combined with bioinformatics and immunoblotting to investigate the differentially expressed proteins between GES-1 and OTA-malignant transformed GES-1 cells (OTA-GES-1T cells) in vitro. We found that four differentially expressed proteins were identified after malignant transformation, including actin, cytoplasmic 1 (ACTB), F-actin-capping protein subunit alpha-1 (CAPZA1), Annexin A3 (ANXA3), thioredoxin peroxidase B from red blood cells (TPx-B) and Fibrinogen beta B (Fibrinogen ß). Among the differentially expressed proteins, the effect of Annexin A3 was analyzed by MTT assay, western blot, cell cycle analysis, wound healing assay, Transwell assay, and colony formation assay in OTA-GES-1T cells. The results showed that inhibition of Annexin A3 by siRNA effectively prevented the proliferation, migration, and invasion abilities of OTA-GES-1T cells. Collectively, the results of this study will guide future research on OTA carcinogenicity.


Assuntos
Anexina A3/metabolismo , Carcinógenos/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Células Epiteliais/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Ocratoxinas/toxicidade , Neoplasias Gástricas/induzido quimicamente , Anexina A3/genética , Western Blotting , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Biologia Computacional , Eletroforese em Gel Bidimensional , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Humanos , Invasividade Neoplásica , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
16.
Arch Toxicol ; 93(4): 1141-1155, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30903243

RESUMO

Ochratoxin A (OTA) is a common natural contaminant found in human and animal food worldwide. Our previous work has shown that OTA can cause oxidative DNA damage, G2 arrest and malignant transformation of human gastric epithelium (GES-1) cells. Mitochondria are considered to be target for the action of many cytotoxic agents. However, the role of mitochondria in the cytotoxicity of OTA remains unknown. The aim of this study is to explore the putative role of mitochondria on OTA cytotoxicity by analyzing mitochondrial changes in GES-1 cells. The results showed that OTA treatment (5, 10, 20 µM) for different times caused increases in the production of reactive oxygen species, and induced mitochondrial damage, shown by loss of mitochondrial membrane potential (ΔΨM), and decrease in cellular ATP concentration. Subsequently, the mitochondrial apoptotic pathway was activated, presented by increase of apoptotic rate and activation of apoptotic proteins. Autophagic cell death was also triggered, demonstrated by the conversion of light chain 3B (LC3B)-I to LC3B-II and elevated levels of green fluorescent protein-LC3 (GFP-LC3) puncta. Moreover, Parkin-dependent mitophagy was also activated presented by the colocalization of MitoTracker with LysoTracker or GFP-LC3 puncta. The inhibition of autophagy and mitophagy by inhibitors or siRNA attenuated the toxic effect of OTA on cell growth. Interestingly, OTA treatment also enhanced mitochondrial biogenesis confirmed by activation of AMPK/PGC-1α/TFAM pathway and promoted cell survival. Collectively, the effects of OTA on mitochondria of GES-1 cells are complex. OTA could cause mitochondrial function disturbance, apoptotic and autophagic cell death and also induce mitochondrial biogenesis.


Assuntos
Apoptose/efeitos dos fármacos , Morte Celular Autofágica/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Ocratoxinas/toxicidade , Biogênese de Organelas , Técnicas de Cultura de Células , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Confocal , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Mitofagia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
17.
Food Chem Toxicol ; 115: 205-211, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29545144

RESUMO

Sterigmatocystin (ST), being a precursor of aflatoxin, is categorized as Group 2B carcinogen. Our previous studies found that both mismatch repair (MMR) pathways and p53 signaling pathway were involved in ST-induced G2 cell cycle arrest in human esophageal squamous epithelial cell line, HET-1A, in vitro. Studies showed that ERK, JNK and p38 signaling pathways played important roles in cell cycle arrest induced by several other carcinogens. However, the role of MAPK pathway and the links between the MMR and p53 signaling pathways in ST induced G2 phase arrest is still not clarified. In the present study, we first explored the role of MAPK pathway upon ST induced G2 arrest, and found that ST up-regulated the expression of G2/M regulatory factors through MAPK signaling pathway (both ERK and p38, but not JNK pathway). The inhibition of ERK and p38 significantly inhibited p53 activation by ST. Blockage of MMR pathway by silencing hMLH1 expression inhibited ERK, p38 and p53 activation and then attenuated G2 arrest by ST. Thus, in conclusion, the current study demonstrated that in response to ST induced DNA damage, hMLH1 was first activated, then triggered ERK, p38 and p53 activation and finally resulted in G2 arrest in HET-1A cells.


Assuntos
Células Epiteliais/efeitos dos fármacos , Esôfago/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Proteína 1 Homóloga a MutL/metabolismo , Esterigmatocistina/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/metabolismo , Esôfago/citologia , Esôfago/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína 1 Homóloga a MutL/genética , Proteína Supressora de Tumor p53/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
18.
Sci Rep ; 7(1): 7953, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801561

RESUMO

Tumor-associated inflammation plays a critical role in facilitating tumor growth, invasion and metastasis. Our previous study showed Aflatoxin G1 (AFG1) could induce lung adenocarcinoma in mice. Chronic lung inflammation associated with superoxide dismutase (SOD)-2 upregulation was found in the lung carcinogenesis. However, it is unclear whether tumor-associated inflammation mediates SOD-2 to contribute to cell invasion in AFG1-induced lung adenocarcinoma. Here, we found increased SOD-2 expression associated with vimentin, α-SMA, Twist1, and MMP upregulation in AFG1-induced lung adenocarcinoma. Tumor-associated inflammatory microenvironment was also elicited, which may be related to SOD-2 upregulation and EMT in cancer cells. To mimic an AFG1-induced tumor-associated inflammatory microenvironment in vitro, we treated A549 cells and human macrophage THP-1 (MΦ-THP-1) cells with AFG1, TNF-α and/or IL-6 respectively. We found AFG1 did not promote SOD-2 expression and EMT in cancer cells, but enhanced TNF-α and SOD-2 expression in MΦ-THP-1 cells. Furthermore, TNF-α could upregulate SOD-2 expression in A549 cells through NF-κB pathway. Blocking of SOD-2 by siRNA partly inhibited TNF-α-mediated E-cadherin and vimentin alteration, and reversed EMT and cell migration in A549 cells. Thus, we suggest that tumor-associated inflammation mediates SOD-2 upregulation through NF-κB pathway, which may contribute to EMT and cell migration in AFG1-induced lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Aflatoxinas/toxicidade , Macrófagos/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Regulação para Cima , Células A549 , Actinas/metabolismo , Adenocarcinoma de Pulmão/induzido quimicamente , Animais , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/farmacologia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , NF-kappa B/metabolismo , Invasividade Neoplásica , Proteínas Nucleares/metabolismo , Transdução de Sinais , Células THP-1 , Fator de Necrose Tumoral alfa/farmacologia , Proteína 1 Relacionada a Twist/metabolismo , Vimentina/metabolismo
19.
Exp Toxicol Pathol ; 69(8): 695-699, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28739395

RESUMO

Sterigmatocystin (ST) is generally recognized as a potential carcinogen, mutagen and teratogen. Studies showed that ST could induce adenocarcinoma of lung in mice in vivo and DNA damage, cell cycle arrest in a human immortalized bronchial epithelial cell line (BEAS-2B cells) and a human lung cancer cell line (A549 cells) in vitro. Besides, ST could induce G2 arrest (cell cycle arrest in G2 phase) in several other cells. Cell cycle arrest may be one of the common toxic effects of ST. As cells may undergo apoptosis or death due to cell cycle arrest, we wondered whether apoptosis is another common effect of ST in different cells in vitro. In the present study, we studied the effects of ST on proliferation and apoptosis in A549 cells and BEAS-2B cells with 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and flow cytometric analysis (FCM). The MTT results showed that proliferation inhibition following ST treatment for 24h was observed in both A549 and BEAS-2B cells in vitro. And increased apoptosis by FCM was also found after ST treatment. Down-regulation of Bcl-2, up-regulation of Bax and the activation of caspase-3 after ST treatment were detected by western blotting analyses. The results in the present study are consistent with our previous results, which indicated that inducing apoptosis may be a common effect of ST in different cells in vitro.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Brônquios/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Esterigmatocistina/toxicidade , Células A549 , Células Epiteliais Alveolares/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Western Blotting , Brônquios/patologia , Técnicas de Cultura de Células , Citometria de Fluxo , Humanos
20.
Cancer Lett ; 372(1): 36-47, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26721203

RESUMO

Ochratoxin A (OTA), one of the most abundant food-contaminating mycotoxins, is a possible carcinogenic to humans. We previously demonstrated that OTA treatment induced oxidative damage in human gastric epithelium cells (GES-1) in vitro. In this study, we found that long-term OTA treatment could result in increased proliferation, migration, and invasion abilities of GES-1 cells and induce anchorage-independent growth of cells in soft agar. Inoculation of OTA-treated GES-1 cells resulted in the formation of tumor xenografts in Balb/c nude mice in vivo, confirming that long-term OTA treatment can induce the malignant transformation of GES-1 cells. In addition, we found that long-term OTA treatment induced oxidative stress and activated the Wnt/ß-catenin pathway, including the nuclear transition of ß-catenin and the upregulation of the downstream molecules of the pathway. Finally, pretreatment with the antioxidant N-acetyl-L-cysteine (NAC) inhibited ROS formation and activation of the Wnt pathway in OTA-transformed GES-1 cells, which decreased the tumor formation abilities of these cells after inoculation in nude mice. These findings suggest that long-term OTA exposure induces the malignant transformation of GES-1 cells via intracellular ROS production and activation of the Wnt/ß-catenin signaling pathway.


Assuntos
Carcinógenos/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Células Epiteliais/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Ocratoxinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/induzido quimicamente , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Anticarcinógenos/farmacologia , Antioxidantes/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/prevenção & controle , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA