Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 18: 2793-2812, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979400

RESUMO

Purpose: Zoledronate (ZA) stands as a highly effective antiresorptive agent known to trigger medication-related osteonecrosis of the jaw (MRONJ). Its clinical dosages primarily encompass those used for oncologic and osteoporosis treatments. While inflammation is recognized as a potential disruptor of mucosal healing processes associated with ZA, prior research has overlooked the influence of varying ZA dosages on tissue adaptability. Therefore, a deeper understanding of the specific mechanisms by which inflammation exacerbates ZA-induced MRONJ, particularly when inflammation acts as a risk factor, remains crucial. Methods: Cell proliferation and migration of human oral keratinocytes (HOK) was analyzed after treatment with different doses of ZA and/or lipopolysaccharide (LPS) to assess their possible effect on mucosal healing of extraction wounds. Mouse periodontitis models were established using LPS, and histological changes in extraction wounds were observed after the administration of oncologic dose ZA. Hematoxylin and eosin (HE) staining and immunofluorescence were used to evaluate mucosal healing. Results: In vitro, LPS did not exacerbate the effects of osteoporosis therapeutic dose of ZA on the proliferation and migration of HOK cells, while aggravated these with the oncologic dose of ZA treatment by inducing mitochondrial dysfunction and oxidative stress via regulating SIRT1 expression. Furthermore, SIRT1 overexpression can alleviate this process. In vivo, local injection of LPS increased the nonunion of mucous membranes in MRONJ and decreased the expression of SIRT1, PGC-1α, and MnSOD. Conclusion: Inflammation aggravates oncologic dose of ZA-induced mitochondrial dysfunction and oxidative stress via a SIRT1-dependent pathway, enhancing the risk of impaired mucosal healing in MRONJ. Our study implies that inflammation becomes a critical risk factor for MRONJ development at higher ZA concentrations. Elucidating the mechanisms of inflammation as a risk factor for mucosal non-healing in MRONJ could inform the development of SIRT1-targeted therapies.


Assuntos
Proliferação de Células , Relação Dose-Resposta a Droga , Inflamação , Transdução de Sinais , Sirtuína 1 , Ácido Zoledrônico , Sirtuína 1/metabolismo , Animais , Camundongos , Humanos , Proliferação de Células/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Transdução de Sinais/efeitos dos fármacos , Ácido Zoledrônico/farmacologia , Ácido Zoledrônico/administração & dosagem , Fatores de Risco , Movimento Celular/efeitos dos fármacos , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/metabolismo , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/tratamento farmacológico , Camundongos Endogâmicos C57BL , Células Cultivadas , Masculino , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Lipopolissacarídeos/farmacologia
2.
Quant Imaging Med Surg ; 14(7): 4436-4449, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39022267

RESUMO

Background: Hepatocellular carcinoma (HCC) is often associated with the overexpression of multiple proteins and genes. For instance, patients with HCC and a high expression of the glypican-3 (GPC3) gene have a poor prognosis, and noninvasive assessment of GPC3 expression before surgery is helpful for clinical decision-making. Therefore, our primary aim in this study was to develop and validate multisequence magnetic resonance imaging (MRI) radiomics nomograms for predicting the expression of GPC3 in individuals diagnosed with HCC. Methods: We conducted a retrospective analysis of 143 patients with HCC, including 123 cases from our hospital and 20 cases from The Cancer Genome Atlas (TCGA) or The Cancer Imaging Archive (TCIA) public databases. We used preoperative multisequence MRI images of the patients for the radiomics analysis. We extracted and screened the imaging histologic features using fivefold cross-validation, Pearson correlation coefficient, and the least absolute shrinkage and selection operator (LASSO) analysis method. We used logistic regression (LR) to construct a radiomics model, developed nomograms based on the radiomics scores and clinical parameters, and evaluated the predictive performance of the nomograms using receiver operating characteristic (ROC) curves, calibration curves, and decision curves. Results: Our multivariate analysis results revealed that tumor morphology (P=0.015) and microvascular (P=0.007) infiltration could serve as independent predictors of GPC3 expression in patients with HCC. The nomograms integrating multisequence radiomics radiomics score, tumor morphology, and microvascular invasion had an area under the curve (AUC) value of 0.989. This approach was superior to both the radiomics model (AUC 0.979) and the clinical model (AUC 0.793). The sensitivity, specificity, and accuracy of 0.944, 0.800, and 0.913 for the test set, respectively, and the model's calibration curve demonstrated good consistency (Brier score =0.029). The decision curve analysis (DCA) indicated that the nomogram had a higher net clinical benefit for predicting the expression of GPC3. External validation of the model's prediction yielded an AUC value of 0.826. Conclusions: Our study findings highlight the close association of multisequence MRI imaging and radiomic features with GPC3 expression. Incorporating clinical parameters into nomograms can offer valuable preoperative insights into tailoring personalized treatment plans for patients diagnosed with HCC.

3.
Front Immunol ; 15: 1403272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040102

RESUMO

Introduction: Granulocytic myeloid-derived suppressor cells (G-MDSCs) show fast recovery following allogeneic hematopoietic stem cell transplantation (allo-HSCT) constituting the major part of peripheral blood in the early phase. Although G-MDSCs mediate immune suppression through multiple mechanisms, they may also promote inflammation under specific conditions. Methods: G-MDSCs were isolated from 82 patients following allo-HSCT within 90 days after allo-HSCT, and their interactions with autologous CD3+ T-cells were examined. T-cell proliferation was assessed by flow cytometry following CFSE staining, while differentiation and interferon-γ secretion were characterized using chemokine receptor profiling and ELISpot assays, respectively. NK cell cytotoxicity was evaluated through co-culture with K562 cells. An aGVHD xenogeneic model in humanized mice was employed to study the in vivo effects of human leukocytes. Furthermore, transcriptional alterations in G-MDSCs were analyzed via RNA sequencing to investigate functional transitions. Results: G-MDSCs promoted inflammation in the early-stage, by facilitating cytokine secretion and proliferation of T cells, as well as their differentiation into pro-inflammatory T helper subsets. At day 28, patients with a higher number of G-MDSCs exhibited an increased risk of developing grades II-IV aGvHD. Besides, adoptive transfer of G-MDSCs from patients at day 28 into humanized mice exacerbated aGvHD. However, at day 90, G-MDSCs led to immunosuppression, characterized by upregulated expression of indoleamine 2,3-dioxygenase gene and interleukin-10 secretion, coupled with the inhibition of T cell proliferation. Furthermore, transcriptional analysis of G-MDSCs at day 28 and day 90 revealed that 1445 genes were differentially expressed. These genes were associated with various pathways, revealing the molecular signatures of early post-transplant differentiation in G-MDSCs. In addition, genes linked to the endoplasmic reticulum stress were upregulated in patients without aGvHD. The acquisition of immunosuppressive function by G-MDSCs may depend on the activation of CXCL2 and DERL1 genes. Conclusion: Our findings revealed the alteration in the immune characteristics of G-MDSCs within the first 90 days post-allo-HSCT. Moreover, the quantity of G-MDSCs at day 28 may serve as a predictive indicator for the development of aGvHD.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células Supressoras Mieloides , Transplante Homólogo , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Animais , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Camundongos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Antígenos HLA-DR/metabolismo , Antígenos HLA-DR/imunologia , Antígenos HLA-DR/genética , Doença Enxerto-Hospedeiro/imunologia , Inflamação/imunologia , Adulto Jovem , Granulócitos/imunologia , Granulócitos/metabolismo , Adolescente , Antígeno CD11b/metabolismo , Antígeno CD11b/imunologia
4.
ISME J ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083033

RESUMO

Methanogenic biodegradation of crude oil is a common process in subsurface biodegraded oil reservoirs. This process was previously assigned to syntrophy of hydrocarbon-degrading bacteria, and methanogenic archaea. Recent studies showed that archaea of the Candidatus Methanoliparum named as alkylotrophic methanogens coupled hydrocarbon degradation and methane production in a single archaeon. To assess geochemical role of Ca. Methanoliparum, we analyzed the chemical, and microbial composition, and metabolites of 209 samples from 15 subsurface oil reservoirs across China. Gas chromatography-mass spectrometry analysis revealed that 92% of the tested samples were substantially degraded. Molecular analysis showed that 85% of the tested samples contained Ca. Methanoliparum, and 52% of the tested samples harbored multiple alkyl-coenzyme M derivatives, the intercellular metabolites of alkylotrophic archaea. According to metagenomic, and metatranscriptomic analysis, Ca. Methanoliparum dominates hydrocarbon degradation in biodegraded samples from the Changqing (CQ), Jiangsu (JS), and Shengli (SL) oilfields, and it is persistently present as shown in a 15-year long sampling effort at the SL oilfield. Together, these findings demonstrate that Ca. Methanoliparum is a widely distributed oil degrader in reservoirs of China, suggesting that alkylotrophic methanogenesis by archaea plays a key role in the alteration of oil reservoirs, thereby expanding our understanding of biogeochemical process in deep biosphere.

5.
Biochem Biophys Res Commun ; 726: 150213, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38964186

RESUMO

The F11 receptor (F11R) gene encoding junctional adhesion molecule A has been associated with gastric cancer (GC) and colorectal cancer (CRC), in which its role and regulation remain to be further elucidated. Recently F11R was also identified as a potential target of adenosine-to-inosine (A-to-I) mediated by the adenosine deaminases acting on RNA (ADARs). Herein, using RNA-Seq and experimental validation, our current study revealed an F11R RNA trinucleotide over-edited by ADAR, with its regulation of gene expression and clinical significance in four GC and three CRC cohorts. Our results found an over-edited AAA trinucleotide in an AluSg located in the F11R 3'-untranslated region (3'-UTR), which showed editing levels correlated with elevated ADAR expression across all GC and CRC cohorts in our study. Overexpression and knockdown of ADAR in GC and CRC cells, followed by RNA-Seq and Sanger sequencing, confirmed the ADAR-mediated F11R 3'-UTR trinucleotide editing, which potentially disrupted an RBM45 binding site identified by crosslinking immunoprecipitation sequencing (CLIP-seq) and regulated F11R expression in luciferase reporter assays. Moreover, the F11R trinucleotide editing showed promising predictive performance for diagnosing GC and CRC across GC and CRC cohorts. Our findings thus highlight both the potential biological and clinical significance of an ADAR-edited F11R trinucleotide in GC and CRC, providing new insights into its application as a novel diagnostic biomarker for both cancers.


Assuntos
Adenosina Desaminase , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Edição de RNA , Proteínas de Ligação a RNA , Neoplasias Gástricas , Humanos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Estudos de Coortes , Regiões 3' não Traduzidas/genética , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Masculino , Feminino
6.
Rheumatol Adv Pract ; 8(2): rkae059, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854416

RESUMO

Objective: Recently, a genome-wide association study identified an association between RA-associated interstitial lung disease (ILD) and RPA3-UMAD1 rs12702634 in the Japanese population, especially for patients with a usual interstitial pneumonia (UIP) pattern. We aimed to replicate this association in a European population and test for interaction with MUC5B rs35705950. Methods: In this genetic case-control association study, patients with RA and ILD and controls with RA and no ILD were included from France, the USA and the Netherlands. Only cases and controls from European genetic ancestries determined by principal components analysis were included in the analyses. RA was defined by the 1987 ACR or 2010 ACR/EULAR criteria and ILD by chest high-resolution CT scan, except in the control dataset from the Netherlands, where the absence of ILD was determined by chart review. Patients were genotyped for RPA3-UMAD1 rs12702634 and MUC5B rs35705950. Associations were tested using logistic regression adjusted for sex, age at RA onset, age at ILD onset or at certified absence of ILD, tobacco smoking status and country of origin. Results: Among the 883 patients included, 322 were RA-ILD cases (36.5%). MUC5B rs35705950 was strongly associated with RA-ILD in all datasets {combined adjusted odds ratio [OR] 2.9 [95% CI 2.1, 3.9], P = 1.1 × 10-11. No association between RPA3-UMAD1 rs12702634 and RA-ILD was observed [combined OR 1.2 (95% CI 0.8, 1.6), P = 0.31. No interaction was found between RPA3-UMAD1 rs12702634 and MUC5B rs35705950 (P = 0.70). Conclusion: Our findings did not support a contribution of RPA3-UMAD1 rs12702634 to the overall RA-ILD susceptibility in the European population.

7.
Plant Cell Rep ; 43(7): 180, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914787

RESUMO

KEY MESSAGE: Hydrogen sulfide improved cold resistance of tomato fruits by regulating energy metabolism and delaying cell wall degradation, thereby alleviating the damage of cold storage on fruits. Postharvest cold storage in tomato fruits extended shelf life but caused the appearance of chilling injury (CI), appeared by softness and spots on the surface of the fruits. These changes were linked closely with energy and cell wall metabolisms. Hydrogen sulfide (H2S), as the gaseous fresh-keeping regulator, was used in the present study to investigate the effects of H2S on energy and cell wall metabolisms in tomato fruits during cold storage. Fruits after harvest were fumigated with different concentrations (0, 0.5, 1, 1.5 mM) of sodium hydrosulfide (NaHS) solution as H2S honor for 24 h and stored at 4 °C for 25 days. The results showed that 1 and 1.5 mM NaHS solution fumigation promoted the accumulation of endogenous H2S, followed by the increase in L-cysteine desulfurase (LCD) and D-cysteine desulfurase (DCD) activities in fruits during cold storage. It was also found that 1 and 1.5 mM NaHS treatments improved H+-ATPase, Ca2+-ATPase, cytochrome C oxidase (CCO), and succinic dehydrogenase (SDH) activities. Moreover, the contents of cellulose and hemicellulose were increased by 1 and 1.5 mM NaHS, following down-regulated activities of cellulase (CL), pectin lyase (PL), α-mannosidase (α-man) and ß-Galactosidase (ß-Gal) and down-regulated expression of PL1, PL8, MAN4 and MAN7 genes. Thus, H2S alleviates CI led by cold storage in tomato fruits via regulating energy and cell wall metabolisms.


Assuntos
Parede Celular , Temperatura Baixa , Metabolismo Energético , Frutas , Sulfeto de Hidrogênio , Solanum lycopersicum , Parede Celular/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Frutas/metabolismo , Frutas/genética , Frutas/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Armazenamento de Alimentos/métodos , Sulfetos/farmacologia , Sulfetos/metabolismo
8.
Mol Med ; 30(1): 64, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760723

RESUMO

BACKGROUND: Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) has been implicated in numerous inflammatory and cancerous conditions. However, its precise molecular mechanisms in endometriosis (EMs) remains unclear. The aim of this study is to examine the influence of IGF2BP3 on the occurrence and progression of EMs and to elucidate its underlying molecular mechanism. METHODS: Efects of IGF2BP3 on endometriosis were confrmed in vitro and in vivo. Based on bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down assays and Fluorescent in situ hybridization (FISH) were used to show the association between IGF2BP3 and UCA1. Single-cell spatial transcriptomics analysis shows the expression distribution of glutaminase 1 (GLS1) mRNA in EMs. Study the effect on glutamine metabolism after ectopic endometriotic stromal cells (eESCs) were transfected with Sh-IGF2BP3 and Sh-UCA1 lentivirus. RESULTS: Immunohistochemical staining have revealed that IGF2BP3 was upregulated in ectopic endometriotic lesions (EC) compared to normal endometrial tissues (EN). The proliferation and migration ability of eESCs were greatly reduced by downregulating IGF2BP3. Additionally, IGF2BP3 has been observed to interact with urothelial carcinoma associated 1 (UCA1), leading to increased stability of GLS1 mRNA and subsequently enhancing glutamine metabolism. Results also demonstrated that IGF2BP3 directly interacts with the 3' UTR region of GLS1 mRNA, influencing its expression and stability. Furthermore, UCA1 was able to bind with c-MYC protein, stabilizing c-MYC mRNA and consequently enhancing GLS1 expression through transcriptional promotion. CONCLUSION: These discoveries underscored the critical involvement of IGF2BP3 in the elevation and stability of GLS1 mRNA in the context of glutamine metabolism by interacting with UCA1 in EMs. The implications of our study extended to the identification of possible therapeutic targets for individuals with EMs.


Assuntos
Endometriose , Glutaminase , Glutamina , Estabilidade de RNA , RNA Longo não Codificante , Proteínas de Ligação a RNA , Feminino , Humanos , Glutaminase/metabolismo , Glutaminase/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Endometriose/metabolismo , Endometriose/genética , Endometriose/patologia , Glutamina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proliferação de Células , Adulto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica , Ligação Proteica
9.
Mol Biol Rep ; 51(1): 669, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787465

RESUMO

BACKGROUND: The loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) is a major pathological hallmark of Parkinson's disease (PD). Orexin B (OXB) has been reported to promote the growth of DA neurons. However, the roles of OXB in the degeneration of DA neurons still remained not fully clear. METHODS: An in vivo PD model was constructed by administrating 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Pole test was performed to investigate the motor function of mice and the number of DA neurons was detected by immunofluorescence (IF). A PD cell model was established by treating SH-SY5Y cells with 1-methyl-4-phenylpyridinium (MPP+). OXB was added to the culture medium 2 h after MPP + treatment. Microscopic analysis was carried out to investigate the function of OXB in the cell model of PD 24 h after MPP + challenge. RNA-Seq analysis of the PD cell model was performed to explore the possible mechanisms. Western blot was used to detect the phosphorylation levels of extracellular signal-regulated kinase (ERK). RESULTS: OXB significantly decreased the DA neurons death caused by MPTP, alleviated MPP+-induced neurotoxicity in SH-SY5Y cells, and robustly enhanced the weight and motor ability of PD mice. Besides, RNA-Seq analysis demonstrated that the mitogen-activated protein kinase (MAPK) pathway was involved in the pathology of PD. Furthermore, MPP + led to increased levels of phosphorylation of ERK (p-ERK), OXB treatment significantly decreased the levels of p-ERK in MPP+-treated SH-SY5Y cells. CONCLUSIONS: This study demonstrated that OXB exerts a neuroprotective role associated with reduced ERK phosphorylation in the PD model. This suggests that OXB may have therapeutic potential for treatment of PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Neurônios Dopaminérgicos , MAP Quinases Reguladas por Sinal Extracelular , Orexinas , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Animais , Camundongos , Fosforilação/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Orexinas/metabolismo , Orexinas/farmacologia , Humanos , Masculino , Linhagem Celular Tumoral , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , 1-Metil-4-fenilpiridínio/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
10.
Front Pharmacol ; 15: 1396975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725666

RESUMO

Osteosarcoma (OS) is the most common primary malignant bone tumor. In the clinic, usual strategies for OS treatment include surgery, chemotherapy, and radiation. However, all of these therapies have complications that cannot be ignored. Therefore, the search for better OS treatments is urgent. Black phosphorus (BP), a rising star of 2D inorganic nanoparticles, has shown excellent results in OS therapy due to its outstanding photothermal, photodynamic, biodegradable and biocompatible properties. This review aims to present current advances in the use of BP nanoparticles in OS therapy, including the synthesis of BP nanoparticles, properties of BP nanoparticles, types of BP nanoparticles, and modification strategies for BP nanoparticles. In addition, we have discussed comprehensively the application of BP in OS therapy, including single, dual, and multimodal synergistic OS therapies, as well as studies about bone regeneration and antibacterial properties. Finally, we have summarized the conclusions, limitations and perspectives of BP nanoparticles for OS therapy.

11.
J Appl Clin Med Phys ; 25(8): e14410, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810092

RESUMO

PURPOSE: The purpose of this study is to characterize the dosimetric properties of a commercial brass GRID collimator for high energy photon beams including 15 and 10 MV. Then, the difference in dosimetric parameters of GRID beams among different energies and linacs was evaluated. METHOD: A water tank scanning system was used to acquire the dosimetric parameters, including the percentage depth dose (PDD), beam profiles, peak to valley dose ratios (PVDRs), and output factors (OFs). The profiles at various depths were measured at 100 cm source to surface distance (SSD), and field sizes of 10 × 10 cm2 and 20 × 20 cm2 on three linacs. The PVDRs and OFs were measured and compared with the treatment planning system (TPS) calculations. RESULTS: Compared with the open beam data, there were noticeable changes in PDDs of GRID fields across all the energies. The GRID fields demonstrated a maximal of 3 mm shift in dmax (Truebeam STX, 15MV, 10 × 10 cm2). The PVDR decreased as beam energy increases. The difference in PVDRs between Trilogy and Truebeam STx using 6MV and 15MV was 1.5% ± 4.0% and 2.1% ± 4.3%, respectively. However, two Truebeam linacs demonstrated less than 2% difference in PVDRs. The OF of the GRID field was dependent on the energy and field size. The measured PDDs, PVDRs, and OFs agreed with the TPS calculations within 3% difference. The TPS calculations agreed with the measurements when using 1 mm calculation resolution. CONCLUSION: The dosimetric characteristics of high-energy GRID fields, especially PVDR, significantly differ from those of low-energy GRID fields. Two Truebeam machines are interchangeable for GRID therapy, while a pronounced difference was observed between Truebeam and Trilogy. A series of empirical equations and reference look-up tables for GRID therapy can be generated to facilitate clinical applications.


Assuntos
Neoplasias , Aceleradores de Partículas , Fótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Aceleradores de Partículas/instrumentação , Radiometria/métodos , Radiometria/instrumentação , Neoplasias/radioterapia , Radioterapia de Intensidade Modulada/métodos , Imagens de Fantasmas , Fracionamento da Dose de Radiação , Método de Monte Carlo
12.
Mol Cell Probes ; 76: 101964, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810840

RESUMO

Breast cancer (BRCA) is the most common cancer among women. Adriamycin (ADR), also known as doxorubicin (Dox), is a commonly used chemotherapeutic agent for BRCA patients, however, the susceptibility of tumor cells to develop resistance to Dox has severely limited its clinical use. One new promising therapeutic target for breast cancer patients is exosomes. The objective of this study was to investigate the role of exosomes in regulating Dox resistance in BRCA. In this study, the exosomes from both types of cells were extracted by differential centrifugation. The effect of exosomes on drug resistance was assessed by laser confocal microscopy, MTT assay, and qRT-PCR. The miRNA was transfected into cells using Lipofectamine 2000, which was then evaluated for downstream genes and changes in drug resistance. Exosomes from MCF-7 cells (MCF-7/exo) and MCF-7/ADR cells (ADR/exo) were effectively extracted in this study. The ADR/exo was able to endocytose MCF-7 cells and make them considerably more resistant to Dox. Moreover, we observed a significant difference in miR-34a-5p expression in MCF-7/ADR and ADR/exo compared to MCF-7 and MCF-7/exo. Among the miR-34a-5p target genes, NOTCH1 displayed a clear change with a negative correlation. In addition, when miR-34a-5p expression was elevated in MCF-7/ADR cells, the expression of miR-34a-5p in ADR/exo was also enhanced alongside NOTCH1, implying that exosomes may carry miRNA into and out of cells and perform their function. In conclusion, exosomes can influence Dox resistance in breast cancer cells by regulating miR-34a-5p/NOTCH1. These findings provide novel insights for research into the causes of tumor resistance and the enhancement of chemotherapy efficacy in breast cancer.


Assuntos
Neoplasias da Mama , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , Exossomos , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Receptor Notch1 , Humanos , Exossomos/metabolismo , Exossomos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Doxorrubicina/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Células MCF-7 , Feminino , Receptor Notch1/metabolismo , Receptor Notch1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
13.
ACS Appl Mater Interfaces ; 16(20): 25757-25772, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738757

RESUMO

The development of therapeutics with high antimicrobial activity and immunomodulatory effects is urgently needed for the treatment of infected wounds due to the increasing danger posed by recalcitrant-infected wounds. In this study, we developed light-controlled antibacterial, photothermal, and immunomodulatory biomimetic N/hPDA@M nanoparticles (NPs). This nanoplatform was developed by loading flavonoid naringenin onto hollow mesoporous polydopamine NPs in a π-π-stacked configuration and encasing them with macrophage membranes. First, our N/hPDA@M NPs efficiently neutralized inflammatory factors present within the wound microenvironment by the integration of macrophage membranes. Afterward, the N/hPDA@M NPs effectively dismantled bacterial biofilms through a combination of the photothermal properties of PDA and the quorum sensing inhibitory effects of naringenin. It is worth noting that N/hPDA@M NPs near-infrared-enhanced release of naringenin exhibited specificity toward the NF-κB-signaling pathway, effectively mitigating the inflammatory response. This innovative design not only conferred remarkable antibacterial properties upon the N/hPDA@M NPs but also endowed them with the capacity to modulate inflammatory responses, curbing excessive inflammation and steering macrophage polarization toward the M2 phenotype. As a result, this multifaceted approach significantly contributes to expediting the healing process of infected skin wounds.


Assuntos
Antibacterianos , Biofilmes , NF-kappa B , Nanopartículas , Percepção de Quorum , Cicatrização , Animais , Humanos , Camundongos , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Flavanonas/química , Flavanonas/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Indóis/química , Indóis/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanopartículas/química , Nanopartículas/uso terapêutico , NF-kappa B/metabolismo , Polímeros/química , Polímeros/farmacologia , Percepção de Quorum/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico
14.
Biochem Genet ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557813

RESUMO

Cisplatin (DDP) is used for the clinical management of triple-negative breast cancer (TNBC). However, the development of drug resistance limits its therapeutic efficacy. Circular RNAs (circRNAs) are known to be involved in tumor DDP resistance. In our previous study, we reported that circ_0007823 expression is downregulated and correlated with adverse prognosis in TNBC. However, its association with DDP resistance remains unclear. This study aimed to determine the role of circ_0007823 and miR-182-5p in DDP-resistant TNBC and explore the underlying mechanisms. First, expression profiles circ_0007823, microRNA (miR)-182-5p, and forkhead box O1 (FOXO1) in TNBC cells were determined. Additionally, biological characteristics of cells, including apoptosis, cell cycle, proliferation, and migration, were analyzed using various assays. Luciferase reporter and rescue assays were used to determine the correlations among circ_0007823, miR-182-5p, and FOXO1 expression. MiR-182-5p was overexpressed in DDP-resistant TNBC cells. MiR-182-5p knockdown suppressed the invasiveness and increased the apoptosis of drug-resistant cells, contributing to G1 arrest and S phase reduction. Mechanistically, circ_0007823 targeted miR-182-5p, and its overexpression drastically reduced the promotional effects of the miR-182-5p mimic on the aggression and transfer ability of drug-resistant cells. Furthermore, FOXO1 overexpression increased the sensitivity of cells to DDP and reduced their malignant progression. Therefore, FOXO1 was established as the downstream target of miR-182-5p that may be used to treat DDP-resistant TNBC. In summary, circ_0007823 overexpression attenuated DDP resistance in TNBC via the miR-182-5p-FOXO1 axis, indicating the therapeutic potential of circ_0007823 DDP-resistant TNBC treatment.

15.
Front Immunol ; 15: 1336311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585260

RESUMO

Envafolimab is a Chinese domestic innovative fusion of a humanized single-domain programmed death-ligand 1 (PD-L1) antibody (dAb) and human immunoglobulin IgG1 crystalline fragment (Fc) developed for subcutaneous injections. It was granted conditional market authorization by the China National Medical Product Administration (NMPA) in December 2021. Envafolimab is used to treat adult patients with previously treated microsatellite instability-high (MSI-H) or deficient mismatch repair (dMMR) advanced solid tumors, including patients with advanced colorectal cancer disease progression who were previously administered fluorouracil, oxaliplatin, and irinotecan, as well as other patients with advanced solid tumors who experienced disease progression after receiving standard treatment and had no other alternative treatment options. However, the lack of post-marketing clinical trial data requires conducting more clinical studies on the safety and efficacy of envafolimab in order to provide scientific basis and a reference for future therapeutic applications. In this paper, we report a case of severe skin necrosis and bleeding in the area of injection after subcutaneous administration of envafolimab in a patient diagnosed with hepatocellular carcinoma. We discuss issues that must be considered before administration of a PD-L1 inhibitor subcutaneously, which could induce immune mechanisms leading to skin necrosis in the area of injection.


Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma Hepatocelular , Neoplasias Hepáticas , Adulto , Humanos , Imunoglobulina G , Progressão da Doença , Necrose
16.
J Ovarian Res ; 17(1): 82, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627854

RESUMO

BACKGROUND: To establish a prognostic risk profile for ovarian cancer (OC) patients based on cancer-associated fibroblasts (CAFs) and gain a comprehensive understanding of their role in OC progression, prognosis, and therapeutic efficacy. METHODS: Data on OC single-cell RNA sequencing (scRNA-seq) and total RNA-seq were collected from the GEO and TCGA databases. Seurat R program was used to analyze scRNA-seq data and identify CAFs clusters corresponding to CAFs markers. Differential expression analysis was performed on the TCGA dataset to identify prognostic genes. A CAF-associated risk signature was designed using Lasso regression and combined with clinicopathological variables to develop a nomogram. Functional enrichment and the immune landscape were also analyzed. RESULTS: Five CAFs clusters were identified in OC using scRNA-seq data, and 2 were significantly associated with OC prognosis. Seven genes were selected to develop a CAF-based risk signature, primarily associated with 28 pathways. The signature was a key independent predictor of OC prognosis and relevant in predicting the results of immunotherapy interventions. A novel nomogram combining CAF-based risk and disease stage was developed to predict OC prognosis. CONCLUSION: The study highlights the importance of CAFs in OC progression and suggests potential for innovative treatment strategies. A CAF-based risk signature provides a highly accurate prediction of the prognosis of OC patients, and the developed nomogram shows promising results in predicting the OC prognosis.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Ovarianas , Humanos , Feminino , Prognóstico , Análise da Expressão Gênica de Célula Única , RNA-Seq , Neoplasias Ovarianas/genética , Microambiente Tumoral/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-38663834

RESUMO

Several noninvasive liver fibrosis tests have been developed and appear to predict the severity of fibrosis, possibly replacing invasive liver biopsy as a monitoring tool.1 The fibrosis-4 (FIB-4) score originally was proposed to help assess liver fibrosis in patients with human immunodeficiency virus and hepatitis C virus co-infection.1 FIB-4 has been used widely to monitor the severity of liver fibrosis, especially in patients with nonalcoholic fatty liver disease,2 now termed metabolic dysfunction-associated steatotic liver disease (MASLD).3.

18.
ACS Appl Mater Interfaces ; 16(13): 15879-15892, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38529805

RESUMO

Tendon regeneration is greatly influenced by the oxidant and the inflammatory microenvironment. Persistent inflammation during the tendon repair can cause matrix degradation, tendon adhesion, and excessive accumulation of reactive oxygen species (ROS), while excessive ROS affect extracellular matrix remodeling and tendon integration. Herein, we used tannic acid (TA) to modify a decellularized tendon slice (DTS) to fabricate a functional scaffold (DTS-TA) with antioxidant and anti-inflammatory properties for tendon repair. The characterizations and cytocompatibility of the scaffolds were examined in vitro. The antioxidant and anti-inflammatory activities of the scaffold were evaluated in vitro and further studied in vivo using a subcutaneous implantation model. It was found that the modified DTS combined with TA via hydrogen bonds and covalent bonds, and the hydrophilicity, thermal stability, biodegradability, and mechanical characteristics of the scaffold were significantly improved. Afterward, the results demonstrated that DTS-TA could effectively reduce inflammation by increasing the M2/M1 macrophage ratio and interleukin-4 (IL-4) expression, decreasing the secretion of interleukin-6 (IL-6) and interleukin-1ß (IL-1ß), as well as scavenging excessive ROS in vitro and in vivo. In summary, DTS modified with TA provides a potential versatile scaffold for tendon regeneration.


Assuntos
Antioxidantes , Polifenóis , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Tendões , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Regeneração
19.
Am J Cancer Res ; 14(2): 562-584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455403

RESUMO

Previous studies reported that alternating electric fields (EFs) in the intermediate frequency (100-300 kHz) and low intensity (1-3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment in vitro, we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices. Using this inductive device, we applied continuous, 200 kHz electromagnetic fields (EMFs) with a radial EF amplitude profile spanning 0-6.5 V/cm to cultures of primary rat astrocytes and several human GBM cell lines - U87, U118, GSC827, and GSC923 - for a duration of 72 hours. Cell density was assessed via segmented pixel densities from GFP expression (U87, U118) or from staining (astrocytes, GSC827, GSC923). Further RNA-Seq analyses were performed on GSC827 and GSC923 cells. Treated cultures of all cell lines exhibited little to no change in proliferation at lower EF amplitudes (0-3 V/cm). At higher amplitudes (> 4 V/cm), different effects were observed. Apparent cell densities increased (U87), decreased (GSC827, GSC923), or showed little change (U118, astrocytes). RNA-Seq analyses on treated and untreated GSC827 and GSC923 cells revealed differentially expressed gene sets of interest, such as those related to cell cycle control. Up- and down-regulation, however, was not consistent across cell lines nor EF amplitudes. Our results indicate no consistent, anti-proliferative effect of 200 kHz EMFs across GBM cell lines and thus contradict previous in vitro findings. Rather, effects varied across different cell lines and EF amplitude regimes, highlighting the need to assess the effect(s) of TTFields and similar treatments on a per cell line basis.

20.
FEBS J ; 291(13): 2792-2810, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38465368

RESUMO

LIM homeodomain transcription factor 1-alpha (LMX1a) is a neuronal lineage-specific transcription activator that plays an essential role during the development of midbrain dopaminergic (mDA) neurons. LMX1a induces the expression of multiple key genes, which ultimately determine the morphology, physiology, and functional identity of mDA neurons. This function of LMX1a is dependent on its homeobox domain. Here, we determined the structures of the LMX1a homeobox domain in complex with the promoter sequences of the Wnt family member 1 (WNT1) or paired like homeodomain 3 (Pitx3) gene, respectively. The complex structures revealed that the LMX1a homeobox domain employed its α3 helix and an N-terminal loop to achieve specific target recognition. The N-terminal loop (loop1) interacted with the minor groove of the double-stranded DNA (dsDNA), whereas the third α-helix (α3) was tightly packed into the major groove of the dsDNA. Structure-based mutations in the α3 helix of the homeobox domain significantly reduced the binding affinity of LMX1a to dsDNA. Moreover, we identified a nonsyndromic hearing loss (NSHL)-related mutation, R199, which yielded a more flexible loop and disturbed the recognition in the minor groove of dsDNA, consistent with the molecular dynamics (MD) simulations. Furthermore, overexpression of Lmx1a promoted the differentiation of SH-SY5Y cells and upregulated the transcription of WNT1 and PITX3 genes. Hence, our work provides a detailed elucidation of the specific recognition between the LMX1a homeobox domain and its specific dsDNA targets, which represents valuable information for future investigations of the functional pathways that are controlled by LMX1a during mDA neuron development.


Assuntos
Proteínas com Homeodomínio LIM , Regiões Promotoras Genéticas , Fatores de Transcrição , Proteína Wnt1 , Humanos , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Ligação Proteica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/química , DNA/metabolismo , DNA/genética , DNA/química , Domínios Proteicos , Modelos Moleculares , Mutação , Cristalografia por Raios X , Sítios de Ligação , Motivos de Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA