Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39270004

RESUMO

Polyethylene glycol (PEG) modification of materials has been identified to mitigate the challenge of biofouling. However, the practical application of PEGylation has been hampered by a low PEGylation density on the material surface. Therefore, developing efficient strategies to promote the PEGylation density is crucial. In this study, PEG brushes (PBs) with various structures were synthesized and their physicochemical properties and biomedical applications were investigated. Compared to benzaldehyde (BA), o-phthalaldehyde (OPA) exhibited higher reactivity with amine groups, resulting in increased grafting density (as high as 96.3%) and improved antifouling properties of PEG brushes. Bottlebrushes fabricated by PEG-OPA and polylysine demonstrated a prolonged circulation time in blood and enhanced potential for magnetic resonance imaging of tumors. Furthermore, the rigidity of the backbone was found to be crucial for the antifouling properties of PEG brushes both in vitro and in vivo. These findings are significant and provide valuable insights into designing biomaterials with superior antifouling performance.

2.
ACS Appl Mater Interfaces ; 16(36): 48607-48618, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39186593

RESUMO

We report a facile interfacial assembly strategy for the preparation of flexible polyphenol-based films for antibacterial and antiultraviolet applications. The free-standing films can be instantaneously formed via spraying tannic acid (TA) at the surface of carboxymethyl chitosan (CMCS) solutions. Compared with the traditional casting-evaporation procedure on solid substrates, the liquid interfacial assembly method for the construction of free-standing films is rapid and facile, which prevents the interface separation procedure from the substrates. The thickness and mechanical properties of the films are well controlled by changing the incubation time. The low-field nuclear magnetic resonance was used to analyze the water distributions inside the films and to distinguish the cross-linked structure of CMCS-TA films with different thicknesses, revealing the dynamics of the film formation process. Importantly, the films exhibit outstanding antibacterial and antiultraviolet properties, which are promising in the applications of wound dressings. This study provides a new avenue for the assembly of flexible free-standing films with multifunctionality via a facile and low-cost fabrication process.


Assuntos
Antibacterianos , Quitosana , Taninos , Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Taninos/química , Taninos/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana
3.
ACS Nano ; 18(34): 23727-23740, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39155444

RESUMO

The treatment of triple-negative breast cancer (TNBC) faces challenges due to its limited immune response and weak tumor immunogenicity. A collaborative strategy involves combining the activation of pyroptosis and the stimulator of interferon genes (STING) pathway to enhance tumor immunogenicity and fortify the antitumor immune response, which may improve therapeutic outcomes in TNBC. In this study, we report the fabrication of a zinc-phenolic nanocapsule (RMP@Cap), which is loaded with mitoxantrone (MTO) and anti-PD-L1 antibodies (aPD-L1) and coated with erythrocyte membrane, for TNBC immunotherapy. The delivery of RMP@Cap can induce tumor cell pyroptosis and, therefore, trigger the release of mitochondrial DNA, which further combines with zinc agonists to intensify STING activation, resulting in a cascade amplification of the therapeutic effect on tumors. Additionally, the incorporation of aPD-L1 into the zinc-phenolic nanocapsule relieves the inhibitory effect of tumor cells on recruited cytotoxic T cells, thereby improving the tumor-killing capacity. Furthermore, the incorporation of a camouflaged erythrocyte membrane coating enables nanocapsules to achieve prolonged in vivo circulation, resulting in improved tumor accumulation for effective antitumor therapy. This study demonstrates a synergistic therapeutic modality involving pyroptosis, coupled with the simultaneous activation and cyclic amplification of the STING pathway in immunotherapy.


Assuntos
Imunoterapia , Proteínas de Membrana , Nucleotidiltransferases , Piroptose , Piroptose/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Animais , Camundongos , Nucleotidiltransferases/metabolismo , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Zinco/química , Mitoxantrona/química , Mitoxantrona/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanocápsulas/química , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais
4.
ACS Macro Lett ; 13(8): 966-971, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038183

RESUMO

Cell-like particles represent a category of synthetic particles designed to emulate the structures or functions of natural cells. Herein, we present the assembly of cell-like poly(ethylene glycol) (PEG) particles with different stiffnesses and shapes via replication of animal cells and investigate the impact of particle stiffness on their biological behaviors. As a proof of concept, we fabricate red blood cell-like and spherical PEG particles with varying cross-linking densities. A systematic exploration of their properties, encompassing morphology, stiffness, deformability, and biodistribution, reveal the vital influence of particle stiffness on in vivo fate, elucidating its role in governing the traversal of capillaries and the dynamic interactions with phagocytic cells.


Assuntos
Eritrócitos , Polietilenoglicóis , Polietilenoglicóis/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/fisiologia , Animais , Camundongos , Humanos , Tamanho da Partícula , Distribuição Tecidual
5.
ACS Appl Mater Interfaces ; 16(21): 27988-27997, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748900

RESUMO

Pickering emulsions stabilized by functional nanoparticles (NPs) have received considerable attention for improving the physical stability and biological function of NPs. Herein, hydrophobic polyphenols were chosen as phenolic ligands to form metal-phenolic network (MPN) coatings on NPs (e.g., silica, polystyrene) mediated by the sono-Fenton reaction. The MPN coatings modulated the surface wettability and charges of NPs and achieved emulsification behavior for preparing Pickering emulsions with pH responsiveness and oxidation resistance. A series of polyphenols, including resveratrol, rutin, naringin, and curcumin, were used to form MPN coatings on NPs, which served as stabilizers for the engineering of functionalized oil-in-water (O/W) Pickering emulsions. This work provides a new avenue for the use of hydrophobic polyphenols to modulate NP emulsifiers, which broadens the application of polyphenols for constructing Pickering emulsions with antioxidant properties.

6.
ACS Nano ; 18(3): 2261-2278, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38207332

RESUMO

Sepsis, which is the most severe clinical manifestation of acute infection and has a mortality rate higher than that of cancer, represents a significant global public health burden. Persistent methicillin-resistant Staphylococcus aureus (MRSA) infection and further host immune paralysis are the leading causes of sepsis-associated death, but limited clinical interventions that target sepsis have failed to effectively restore immune homeostasis to enable complete eradication of MRSA. To restimulate anti-MRSA innate immunity, we developed CRV peptide-modified lipid nanoparticles (CRV/LNP-RNAs) for transient in situ programming of macrophages (MΦs). The CRV/LNP-RNAs enabled the delivery of MRSA-targeted chimeric antigen receptor (CAR) mRNA (SasA-CAR mRNA) and CASP11 (a key MRSA intracellular evasion target) siRNA to MΦs in situ, yielding CAR-MΦs with boosted bactericidal potency. Specifically, our results demonstrated that the engineered MΦs could efficiently phagocytose and digest MRSA intracellularly, preventing immune evasion by the "superbug" MRSA. Our findings highlight the potential of nanoparticle-enabled in vivo generation of CAR-MΦs as a therapeutic platform for multidrug-resistant (MDR) bacterial infections and should be confirmed in clinical trials.


Assuntos
Lipossomos , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Receptores de Antígenos Quiméricos , Sepse , Infecções Estafilocócicas , Animais , Camundongos , Receptores de Antígenos Quiméricos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , RNA Mensageiro , Antibacterianos/farmacologia , Macrófagos , Sepse/tratamento farmacológico , Lipídeos/farmacologia
7.
Chem Commun (Camb) ; 60(19): 2591-2604, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285062

RESUMO

Poly(ethylene glycol) (PEG) is considered to be the "gold standard" among the stealth polymers employed for drug delivery. Using PEG to modify or engineer particles has thus gained increasing interest because of the ability to prolong blood circulation time and reduce nonspecific biodistribution of particles in vivo, owing to the low fouling and stealth properties of PEG. In addition, endowing PEG-based particles with targeting and drug-loading properties is essential to achieve enhanced drug accumulation at target sites in vivo. In this feature article, we focus on recent work on the synthesis of PEG particles, in which PEG is the main component in the particles. We highlight different synthesis methods used to generate PEG particles, the influence of the physiochemical properties of PEG particles on their stealth and targeting properties, and the application of PEG particles in targeted drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Polietilenoglicóis , Polietilenoglicóis/química , Distribuição Tecidual , Polímeros , Engenharia , Portadores de Fármacos/química
8.
Adv Sci (Weinh) ; 11(1): e2304480, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939288

RESUMO

A major pathological basis for low back pain is intervertebral disk degeneration, which is primarily caused by the degeneration of nucleus pulposus cells due to imbalances in extracellular matrix (ECM) anabolism and catabolism. The phenotype of macrophages in the local immune microenvironment greatly influences the balance of ECM metabolism. Therefore, the control over the macrophage phenotype of the ECM is promising to repair intervertebral disk degeneration. Herein, the preparation of an injectable nanocomposite hydrogel is reported by embedding epigallocatechin-3-gallate-coated hydroxyapatite nanorods in O-carboxymethyl chitosan cross-linked with aldehyde hyaluronic acid that is capable of modulating the phenotype of macrophages. The bioactive components play a primary role in repairing the nucleus pulposus, where the hydroxyapatite nanorods can promote anabolism in the ECM through the nucleopulpogenic differentiation of mesenchymal stem cells. In addition, epigallocatechin-3-gallate can decrease catabolism in the ECM in nucleus pulposus by inducing M2 macrophage polarization, which exists in normal intervertebral disks and can alleviate degeneration. The nanocomposite hydrogel system shows promise for the minimally invasive and effective treatment of intervertebral disk degeneration by controlling anabolism and catabolism in the ECM and inhibiting the IL17 signaling pathway (M1-related pathway) in vitro and in vivo.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/metabolismo , Hidrogéis/farmacologia , Nanogéis , Disco Intervertebral/metabolismo , Hidroxiapatitas
9.
Adv Mater ; 36(13): e2311109, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127403

RESUMO

Glioblastoma multiforme (GBM) is notoriously resistant to immunotherapy due to its intricate immunosuppressive tumor microenvironment (TME). Dysregulated cholesterol metabolism is implicated in the TME and promotes tumor progression. Here, it is found that cholesterol levels in GBM tissues are abnormally high, and glioma-supportive macrophages (GSMs), an essential "cholesterol factory", demonstrate aberrantly hyperactive cholesterol metabolism and efflux, providing cholesterol to fuel GBM growth and induce CD8+ T cells exhaustion. Bioinformatics analysis confirms that high 7-dehydrocholesterol reductase (DHCR7) level in GBM tissues associates with increased cholesterol biosynthesis, suppressed tumoricidal immune response, and poor patient survival, and DHCR7 expression level is significantly elevated in GSMs. Therefore, an intracavitary sprayable nanoregulator (NR)-encased hydrogel system to modulate cholesterol metabolism of GSMs is reported. The degradable NR-mediated ablation of DHCR7 in GSMs effectively suppresses cholesterol supply and activates T-cell immunity. Moreover, the combination of Toll-like receptor 7/8 (TLR7/8) agonists significantly promotes GSM polarization to antitumor phenotypes and ameliorates the TME. Treatment with the hybrid system exhibits superior antitumor effects in the orthotopic GBM model and postsurgical recurrence model. Altogether, the findings unravel the role of GSMs DHCR7/cholesterol signaling in the regulation of TME, presenting a potential treatment strategy that warrants further clinical trials.


Assuntos
Neoplasias Encefálicas , Dissacarídeos , Glioblastoma , Glioma , Glucuronatos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Linfócitos T CD8-Positivos/metabolismo , Hidrogéis/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glioma/patologia , Macrófagos/metabolismo , Imunoterapia , Colesterol , Microambiente Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo
10.
Proc Natl Acad Sci U S A ; 120(46): e2220300120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37948584

RESUMO

Spinal cord injury (SCI) can lead to iron overloading and subsequent neuronal ferroptosis, which hinders the recovery of locomotor function. However, it is still unclear whether the maintenance of neuronal iron homeostasis enables to revitalize intrinsic neurogenesis. Herein, we report the regulation of cellular iron homeostasis after SCI via the chelation of excess iron ions and modulation of the iron transportation pathway using polyphenol-based hydrogels for the revitalization of intrinsic neurogenesis. The reversed iron overloading can promote neural stem/progenitor cell differentiation into neurons and elicit the regenerative potential of newborn neurons, which is accompanied by improved axon reinnervation and remyelination. Notably, polyphenol-based hydrogels significantly increase the neurological motor scores from ~8 to 18 (out of 21) and restore the transmission of sensory and motor electrophysiological signals after SCI. Maintenance of iron homeostasis at the site of SCI using polyphenol-based hydrogels provides a promising paradigm to revitalize neurogenesis for the treatment of iron accumulation-related nervous system diseases.


Assuntos
Sobrecarga de Ferro , Traumatismos da Medula Espinal , Humanos , Recém-Nascido , Neurônios , Neurogênese , Traumatismos da Medula Espinal/terapia , Hidrogéis , Ferro , Polifenóis , Homeostase , Medula Espinal
11.
Adv Healthc Mater ; 12(22): e2300249, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37016572

RESUMO

Nanovaccine-based immunotherapy can initiate strong immune responses and establish a long-term immune memory to prevent tumor invasion and recurrence. Herein, the assembly of redox-responsive antigen nanoparticles (NPs) conjugated with imidazoquinoline-based TLR7/8 agonists for lymph node-targeted immune activation is reported, which can potentiate tumor therapy and prevention. Antigen NPs are assembled via the templating of zeolitic imidazolate framework-8 NPs to cross-link ovalbumin with disulfide bonds, which enables the NPs with redox-responsiveness for improved antigen cross-presentation and dendritic cell activation. The formulated nanovaccines promote the lymphatic co-delivery of antigens and agonists, which can trigger immune responses of cytotoxic T lymphocytes and strong immunological memory. Notably, nanovaccines demonstrate their superiority for tumor prevention owing to the elicited robust antitumor immunity. The reported strategy provides a rational design of nanovaccines for enhanced cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Humanos , Animais , Camundongos , Receptor 7 Toll-Like , Antígenos/química , Neoplasias/terapia , Adjuvantes Imunológicos , Imunoterapia , Nanopartículas/química , Vacinação , Células Dendríticas , Camundongos Endogâmicos C57BL
12.
Angew Chem Int Ed Engl ; 62(14): e202218021, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36732289

RESUMO

Nanostructured materials with tunable structures and functionality are of interest in diverse areas. Herein, metal ions are coordinated with quinones through metal-acetylacetone coordination bonds to generate a class of structurally tunable, universally adhesive, hydrophilic, and pH-degradable materials. A library of metal-quinone networks (MQNs) is produced from five model quinone ligands paired with nine metal ions, leading to the assembly of particles, tubes, capsules, and films. Importantly, MQNs show bidirectional pH-responsive disassembly in acidic and alkaline solutions, where the quinone ligands mediate the disassembly kinetics, enabling temporal and spatial control over the release of multiple components using multilayered MQNs. Leveraging this tunable release and the inherent medicinal properties of quinones, MQN prodrugs with a high drug loading (>89 wt %) are engineered using doxorubicin for anti-cancer therapy and shikonin for the inhibition of the main protease in the SARS-CoV-2 virus.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Metais/química , Quinonas/farmacologia
13.
ACS Nano ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36626296

RESUMO

Effective drug delivery and prevention of postoperative recurrence are significant challenges for current glioblastoma (GBM) treatment. Poor drug delivery is mainly due to the presence of the blood-brain barrier (BBB), and postoperative recurrence is primarily due to the resistance of GBM cells to chemotherapeutic drugs and the presence of an immunosuppressive microenvironment. Herein, a biomimetic nanodrug delivery platform based on endogenous exosomes that could efficiently target the brain without targeting modifications and co-deliver pure drug nanomicelles and immune adjuvants for safe and efficient chemo-immunotherapy against GBM is prepared. Inspired by the self-assembly technology of small molecules, tanshinone IIA (TanIIA) and glycyrrhizic acid (GL), which are the inhibitors of signal transducers and activators of transcription 3 from traditional Chinese medicine (TCM), self-assembled to form TanIIA-GL nanomicelles (TGM). Endogenous serum exosomes are selected to coat the pure drug nanomicelles, and the CpG oligonucleotides, agonists of Toll-like receptor 9, are anchored on the exosome membrane to obtain immune exosomes loaded with TCM self-assembled nanomicelles (CpG-EXO/TGM). Our results demonstrate that CpG-EXO/TGM can bind free transferrin in blood, prolong blood circulation, and maintain intact structures when traversing the BBB and targeting GBM cells. In the GBM microenvironment, the strong anti-GBM effect of CpG-EXO/TGM is mainly attributed to two factors: (i) highly efficient uptake by GBM cells and sufficient intracellular release of drugs to induce apoptosis and (ii) stimulation of dendritic cell maturation and induction of tumor-associated macrophages polarization by CpG oligonucleotides to generate anti-GBM immune responses. Further research found that CpG-EXO/TGM can not only produce better efficacy in combination with temozolomide but also prevent a postoperative recurrence.

14.
J Am Chem Soc ; 144(40): 18419-18428, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36166420

RESUMO

Surface modification with poly(ethylene glycol) (PEGylation) is an effective strategy to improve the colloidal stability of nanoparticles (NPs) and is often used to minimize cellular uptake and clearance of NPs by the immune system. However, PEGylation can also trigger the accelerated blood clearance (ABC) phenomenon, which is known to reduce the circulation time of PEGylated NPs. Herein, we report the engineering of stealth PEG NPs that can avoid the ABC phenomenon and, when modified with hyaluronic acid (HA), show specific cancer cell targeting and drug delivery. PEG NPs cross-linked with disulfide bonds are prepared by using zeolitic imidazolate framework-8 NPs as templates. The reported templating strategy enables the simultaneous removal of the template and formation of PEG NPs under mild conditions (pH 5.5 buffer). Compared to PEGylated liposomes, PEG NPs avoid the secretion of anti-PEG antibodies and the presence of anti-PEG IgM and IgG did not significantly accelerate the blood clearance of PEG NPs, indicating the inhibition of the ABC effect for the PEG NPs. Functionalization of the PEG NPs with HA affords PEG NPs that retain their stealth properties against macrophages, target CD44-expressed cancer cells and, when loaded with the anticancer drug doxorubicin, effectively inhibit tumor growth. The innovation of this study lies in the engineering of PEG NPs that can circumvent the ABC phenomenon and that can be functionalized for the improved and targeted delivery of drugs.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/química , Dissulfetos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Ácido Hialurônico/química , Imunoglobulina G , Imunoglobulina M/uso terapêutico , Lipossomos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Polietilenoglicóis/química
15.
Chem Commun (Camb) ; 58(56): 7777-7780, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35731091

RESUMO

Confined sono-polymerization is developed to prepare poly(ethylene glycol) nanoparticles within water-in-oil microemulsion, followed by post-functionalization with a bispecific antibody (anti HER2 and anti PEG) for targeted delivery of photosensitizers (i.e., indocyanine green). The nanoparticles could specifically target to breast cancer cells (i.e., SKBR3) that overexpress HER2 receptors for the inhibition of cancer cell growth under 808 nm laser irradiation. This study highlights a facile and controllable method to fabricate therapeutic nanoparticles capable of targeted delivery.


Assuntos
Nanopartículas , Polietilenoglicóis , Linhagem Celular Tumoral , Verde de Indocianina , Nanopartículas/uso terapêutico , Fármacos Fotossensibilizantes , Polimerização
16.
Acta Pharm Sin B ; 12(3): 1100-1125, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35530155

RESUMO

Due to the special physiological and pathological characteristics of gliomas, most therapeutic drugs are prevented from entering the brain. To improve the poor prognosis of existing therapies, researchers have been continuously developing non-invasive methods to overcome barriers to gliomas therapy. Although these strategies can be used clinically to overcome the blood‒brain barrier (BBB), the accurate delivery of drugs to the glioma lesions cannot be ensured. Nano-drug delivery systems (NDDS) have been widely used for precise drug delivery. In recent years, researchers have gathered their wisdom to overcome barriers, so many well-designed NDDS have performed prominently in preclinical studies. These meticulous designs mainly include cascade passing through BBB and targeting to glioma lesions, drug release in response to the glioma microenvironment, biomimetic delivery systems based on endogenous cells/extracellular vesicles/protein, and carriers created according to the active ingredients of traditional Chinese medicines. We reviewed these well-designed NDDS in detail. Furthermore, we discussed the current ongoing and completed clinical trials of NDDS for gliomas therapy, and analyzed the challenges and trends faced by clinical translation of these well-designed NDDS.

17.
Macromol Rapid Commun ; 43(7): e2100830, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35106862

RESUMO

The rapid and facile synthesis of hot melt super glue (HMSG) via the formation of adhesive supramolecular networks between catechol or pyrogallol hydroxyl groups (-OH) of polyphenols and repeat units (-CH2 CH2 O-) of poly(ethylene glycol) (PEG) based on hydrogen bonds is reported. The adhesion strength of HMSG, processed by heating-cooling of polyphenols and PEG without additional solvents, can be tuned up to 8.8 MPa via changing the molecular weight of PEG and the ratio of hydrogen bonding donors and receptors. The advantages of the reported HMSG lie in the ease and scalability of the assembly process, rapid adhesion on various substrates with excellent processability, resistance of low temperature and organic solvents, and recyclable adhesion strength. The solvent-free HMSG represents a promising adhesive supramolecular network to expand the versatility and application of polyphenol-based materials.


Assuntos
Adesivos , Polifenóis , Ligação de Hidrogênio , Polietilenoglicóis/química , Solventes
18.
Chem Commun (Camb) ; 58(14): 2315-2318, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35076033

RESUMO

Herein, we report the design of therapeutic nanoparticles by encapsulating photosensitizers and aluminum ions into metal-organic frameworks. The nanoparticles could significantly inhibit the growth of primary and rechallenged tumors by a combination of photothermal therapy and immunotherapy. This work offers a promising strategy to design an immunologic nanoplatform for "cold" tumor therapy.


Assuntos
Antineoplásicos/farmacologia , Imunoterapia , Estruturas Metalorgânicas/farmacologia , Terapia Fototérmica , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Estruturas Metalorgânicas/síntese química , Estruturas Metalorgânicas/química , Camundongos , Estrutura Molecular , Tamanho da Partícula
19.
Biomaterials ; 278: 121163, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34601197

RESUMO

Glioblastoma multiforme (GBM) is a common malignancy of the central nervous system, but conventional treatments yield unsatisfactory results. Although innovative therapeutic approaches have been developed, they prolong survival by only approximately 5 months. The heterogeneity of GBM renders growth inhibition with a single drug difficult, and exploring combination approaches with multiple targets for the comprehensive treatment of GBM is expected to overcome this limitation. In this study, we designed a biocompatible cRGD/Pt + DOX@GFNPs (RPDGs) nanoformulation to disrupt redox homeostasis in GBM cells and promote the simultaneous occurrence of efficient apoptosis and ferroptosis. Taking advantage of the highly stable Fenton reaction catalytic activity of gallic acid (GA)/Fe2+ nanoparticles in physiological environments, the ability of Pt (IV) to deplete glutathione (GSH) and increase reactive oxygen species (ROS) levels, and the efficient photothermal conversion efficiency of GA/Fe2+ nanoparticles, our synthesized multifunctional and multitargeted RPDGs significantly increased intracellular ROS levels and thus induced ferroptosis. Furthermore, the RPDGs displayed superior photothermal responsiveness and magnetic resonance imaging (MRI) capabilities. These results indicate that RPDGs can not only directly inhibit the growth of tumors but also effectively improve the efficient translocation of conventional chemotherapeutic drugs across the blood-brain barrier, thereby providing a new approach for the comprehensive treatment of GBM.


Assuntos
Glioblastoma , Nanopartículas Metálicas , Nanopartículas , Apoptose , Linhagem Celular Tumoral , Terapia Combinada , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Humanos , Espectroscopia de Ressonância Magnética
20.
Biomater Sci ; 9(20): 6940-6949, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34528658

RESUMO

Combination cancer immunotherapy that synergizes the advantages of multiple therapeutic agents has shown great potential in tumor treatment. Herein, we report the one-step assembly of therapeutic nanoparticles (NPs) to co-deliver photosensitizers and adjuvants for combination photodynamic therapy (PDT) and immunotherapy. The NPs are obtained via self-assembly of chlorin e6 (Ce6) and imidazoquinoline-based TLR7 agonists (IMDQ), which results in a high loading efficacy of 72.2% and 27.8% for Ce6 and IMDQ, respectively. Upon laser irradiation, the resulting NPs could not only effectively induce photodynamic immunogenic cancer cell death, but also elicit robust antitumor immunity, leading to significant inhibition of both primary and distant tumors in a bilateral tumor model. This study demonstrates the potential of self-assembled NPs in co-delivering multiple therapeutics for potential immunotherapy to enhance the antitumor efficacy.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Linhagem Celular Tumoral , Imunoterapia , Fármacos Fotossensibilizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA