Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 3, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178134

RESUMO

BACKGROUND: The involvement of the autonomic nervous system in the regulation of inflammation is an emerging concept with significant potential for clinical applications. Recent studies demonstrate that stimulating the vagus nerve activates the cholinergic anti-inflammatory pathway that inhibits pro-inflammatory cytokines and controls inflammation. The α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages plays a key role in mediating cholinergic anti-inflammatory effects through a downstream intracellular mechanism involving inhibition of NF-κB signaling, which results in suppression of pro-inflammatory cytokine production. However, the role of the α7nAChR in the regulation of other aspects of the immune response, including the recruitment of monocytes/macrophages to the site of inflammation remained poorly understood. RESULTS: We observed an increased mortality in α7nAChR-deficient mice (compared with wild-type controls) in mice with endotoxemia, which was paralleled with a significant reduction in the number of monocyte-derived macrophages in the lungs. Corroborating these results, fluorescently labeled α7nAChR-deficient monocytes adoptively transferred to WT mice showed significantly diminished recruitment to the inflamed tissue. α7nAChR deficiency did not affect monocyte 2D transmigration across an endothelial monolayer, but it significantly decreased the migration of macrophages in a 3D fibrin matrix. In vitro analysis of major adhesive receptors (L-selectin, ß1 and ß2 integrins) and chemokine receptors (CCR2 and CCR5) revealed reduced expression of integrin αM and αX on α7nAChR-deficient macrophages. Decreased expression of αMß2 was confirmed on fluorescently labeled, adoptively transferred α7nAChR-deficient macrophages in the lungs of endotoxemic mice, indicating a potential mechanism for α7nAChR-mediated migration. CONCLUSIONS: We demonstrate a novel role for the α7nAChR in mediating macrophage recruitment to inflamed tissue, which indicates an important new aspect of the cholinergic regulation of immune responses and inflammation.


Assuntos
Endotoxemia , Receptor Nicotínico de Acetilcolina alfa7 , Camundongos , Animais , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Endotoxemia/metabolismo , Colinérgicos/metabolismo
2.
BMC Gastroenterol ; 23(1): 226, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393226

RESUMO

Esophageal stricture is a common complication after endoscopic submucosal dissection (ESD) for superficial esophageal cancer and precancerous lesions, we intend to investigate the independent risk factors of esophageal stricture after ESD by adding the data of included living habits, established a nomogram model to predict the risk of esophageal stricture, and verified it by external data. The clinical data and living habits of patients with early esophageal cancer and precancerous lesions who underwent ESD in the Affiliated Hospital of North Sichuan Medical College and Langzhong People's Hospital from March 2017 to August 2021 were retrospectively collected. The data collected from the two hospitals were used as the development group (n = 256) and the validation group (n = 105), respectively. Univariate and multivariate logistic regression analyses were used to determine independent risk factors for esophageal stricture after ESD and establish a nomogram model for the development group. The prediction performance of the nomogram model is internally and externally verified by calculating C-Index and plotting the receiver operating characteristic curve (ROC) and calibration curve, respectively. The results showed that Age, drinking water temperature, neutrophil-lymphocyte ratio, the extent of esophageal mucosal defect, longitudinal diameter of resected mucosa, and depth of tissue invasion (P < 0.05) were independent risk factors for esophageal stricture after ESD. The C-Index of the development group and validation group was 0.925 and 0.861, respectively. The ROC curve and area under the curve (AUC) of the two groups suggested that the discrimination and prediction performance of the model were good. The two groups of calibration curves are consistent and almost overlap with the ideal calibration curve, indicating that the predicted results of this model are in good agreement with the actual observed results. In conclusion, this nomogram model has a high accuracy for predicting the risk of esophageal stricture after ESD, providing a theoretical basis for reducing or avoiding esophageal stricture and guiding clinical practice.


Assuntos
Ressecção Endoscópica de Mucosa , Neoplasias Esofágicas , Estenose Esofágica , Lesões Pré-Cancerosas , Humanos , Ressecção Endoscópica de Mucosa/efeitos adversos , Estudos de Casos e Controles , Estenose Esofágica/etiologia , Nomogramas , Estudos Retrospectivos , Neoplasias Esofágicas/cirurgia , Fatores de Risco
3.
Circ Res ; 132(1): e22-e42, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36444722

RESUMO

BACKGROUND: Excess cholesterol accumulation in lesional macrophages elicits complex responses in atherosclerosis. Epsins, a family of endocytic adaptors, fuel the progression of atherosclerosis; however, the underlying mechanism and therapeutic potential of targeting Epsins remains unknown. In this study, we determined the role of Epsins in macrophage-mediated metabolic regulation. We then developed an innovative method to therapeutically target macrophage Epsins with specially designed S2P-conjugated lipid nanoparticles, which encapsulate small-interfering RNAs to suppress Epsins. METHODS: We used single-cell RNA sequencing with our newly developed algorithm MEBOCOST (Metabolite-mediated Cell Communication Modeling by Single Cell Transcriptome) to study cell-cell communications mediated by metabolites from sender cells and sensor proteins on receiver cells. Biomedical, cellular, and molecular approaches were utilized to investigate the role of macrophage Epsins in regulating lipid metabolism and transport. We performed this study using myeloid-specific Epsin double knockout (LysM-DKO) mice and mice with a genetic reduction of ABCG1 (ATP-binding cassette subfamily G member 1; LysM-DKO-ABCG1fl/+). The nanoparticles targeting lesional macrophages were developed to encapsulate interfering RNAs to treat atherosclerosis. RESULTS: We revealed that Epsins regulate lipid metabolism and transport in atherosclerotic macrophages. Inhibiting Epsins by nanotherapy halts inflammation and accelerates atheroma resolution. Harnessing lesional macrophage-specific nanoparticle delivery of Epsin small-interfering RNAs, we showed that silencing of macrophage Epsins diminished atherosclerotic plaque size and promoted plaque regression. Mechanistically, we demonstrated that Epsins bound to CD36 to facilitate lipid uptake by enhancing CD36 endocytosis and recycling. Conversely, Epsins promoted ABCG1 degradation via lysosomes and hampered ABCG1-mediated cholesterol efflux and reverse cholesterol transport. In a LysM-DKO-ABCG1fl/+ mouse model, enhanced cholesterol efflux and reverse transport due to Epsin deficiency was suppressed by the reduction of ABCG1. CONCLUSIONS: Our findings suggest that targeting Epsins in lesional macrophages may offer therapeutic benefits for advanced atherosclerosis by reducing CD36-mediated lipid uptake and increasing ABCG1-mediated cholesterol efflux.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo
4.
Front Cardiovasc Med ; 8: 742382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557535

RESUMO

There has been a rise in the prevalence of non-alcohol fatty liver disease (NAFLD) due to the popularity of western diets and sedentary lifestyles. One quarter of NAFLD patients is diagnosed with non-alcoholic steatohepatitis (NASH), with histological evidence not only of fat accumulation in hepatocytes but also of liver cell injury and death due to long-term inflammation. Severe NASH patients have increased risks of cirrhosis and liver cancer. In this review, we discuss the pathogenesis and current methods of diagnosis for NASH, and current status of drug development for this life-threatening liver disease.

5.
Cells ; 10(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34440686

RESUMO

Background: The endothelial epsin 1 and 2 endocytic adaptor proteins play an important role in atherosclerosis by regulating the degradation of the calcium release channel inositol 1,4,5-trisphosphate receptor type 1 (IP3R1). In this study, we sought to identify additional targets responsible for epsin-mediated atherosclerotic endothelial cell activation and inflammation in vitro and in vivo. Methods: Atherosclerotic ApoE-/- mice and ApoE-/- mice with an endothelial cell-specific deletion of epsin 1 on a global epsin 2 knock-out background (EC-iDKO/ApoE-/-), and aortic endothelial cells isolated from these mice, were used to examine inflammatory signaling in the endothelium. Results: Inflammatory signaling was significantly abrogated by both acute (tumor necrosis factor-α (TNFα) or lipopolysaccharide (LPS)) and chronic (oxidized low-density lipoprotein (oxLDL)) stimuli in EC-iDKO/ApoE-/- mice and murine aortic endothelial cells (MAECs) isolated from epsin-deficient animals when compared to ApoE-/- controls. Mechanistically, the epsin ubiquitin interacting motif (UIM) bound to Toll-like receptors (TLR) 2 and 4 to potentiate inflammatory signaling and deletion of the epsin UIM mitigated this interaction. Conclusions: The epsin endocytic adaptor proteins potentiate endothelial cell activation in acute and chronic models of atherogenesis. These studies further implicate epsins as therapeutic targets for the treatment of inflammation of the endothelium associated with atherosclerosis.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Inflamação , Transdução de Sinais , Animais , Aorta/metabolismo , Aterosclerose/etiologia , Células Endoteliais/patologia , Feminino , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Knockout
6.
J Leukoc Biol ; 109(5): 877-890, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33438263

RESUMO

Neutrophil-macrophage interplay is a fine-tuning mechanism that regulates the innate immune response during infection and inflammation. Cell surface receptors play an essential role in neutrophil and macrophage functions. The same receptor can provide different outcomes within diverse leukocyte subsets in different inflammatory conditions. Understanding the variety of responses mediated by one receptor is critical for the development of anti-inflammatory treatments. In this study, we evaluated the role of a leukocyte adhesive receptor, integrin αD ß2 , in the development of acute inflammation. αD ß2 is mostly expressed on macrophages and contributes to the development of chronic inflammation. In contrast, we found that αD -knockout dramatically increases mortality in the cecal ligation and puncture sepsis model and LPS-induced endotoxemia. This pathologic outcome of αD -deficient mice is associated with a reduced number of monocyte-derived macrophages and an increased number of neutrophils in their lungs. However, the tracking of adoptively transferred fluorescently labeled wild-type (WT) and αD-/- monocytes in WT mice during endotoxemia demonstrated only a moderate difference between the recruitment of these two subsets. Moreover, the rescue experiment, using i.v. injection of WT monocytes to αD -deficient mice followed by LPS challenge, showed only slightly reduced mortality. Surprisingly, the injection of WT neutrophils to the bloodstream of αD-/- mice markedly increased migration of monocyte-derived macrophage to lungs and dramatically improves survival. αD -deficient neutrophils demonstrate increased necrosis/pyroptosis. αD ß2 -mediated macrophage accumulation in the lungs promotes efferocytosis that reduced mortality. Hence, integrin αD ß2 implements a complex defense mechanism during endotoxemia, which is mediated by macrophages via a neutrophil-dependent pathway.


Assuntos
Endotoxemia/imunologia , Cadeias alfa de Integrinas/metabolismo , Neutrófilos/metabolismo , Sepse/imunologia , Transferência Adotiva , Animais , Ceco/patologia , Contagem de Células , Movimento Celular , Citocinas/sangue , Modelos Animais de Doenças , Endotoxemia/sangue , Endotoxemia/complicações , Cadeias alfa de Integrinas/deficiência , Ligadura , Lipopolissacarídeos , Pulmão/patologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Monócitos/patologia , Necrose , Neutrófilos/patologia , Fagocitose , Punções , Piroptose , Sepse/sangue , Sepse/complicações , Análise de Sobrevida , Regulação para Cima
7.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32960814

RESUMO

Estrogen receptor-negative (ER-negative) breast cancer is thought to be more malignant and devastating than ER-positive breast cancer. ER-negative breast cancer exhibits elevated NF-κB activity, but how this abnormally high NF-κB activity is maintained is poorly understood. The importance of linear ubiquitination, which is generated by the linear ubiquitin chain assembly complex (LUBAC), is increasingly appreciated in NF-κB signaling, which regulates cell activation and death. Here, we showed that epsin proteins, a family of ubiquitin-binding endocytic adaptors, interacted with LUBAC via its ubiquitin-interacting motif and bound LUBAC's bona fide substrate NEMO via its N-terminal homolog (ENTH) domain. Furthermore, epsins promoted NF-κB essential modulator (NEMO) linear ubiquitination and served as scaffolds for recruiting other components of the IκB kinase (IKK) complex, resulting in the heightened IKK activation and sustained NF-κB signaling essential for the development of ER-negative breast cancer. Heightened epsin levels in ER-negative human breast cancer are associated with poor relapse-free survival. We showed that transgenic and pharmacological approaches eliminating epsins potently impeded breast cancer development in both spontaneous and patient-derived xenograft breast cancer mouse models. Our findings established the pivotal role epsins played in promoting breast cancer. Thus, targeting epsins may represent a strategy to restrain NF-κB signaling and provide an important perspective into ER-negative breast cancer treatment.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Mamárias Animais/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Ubiquitinação , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética
8.
Front Immunol ; 9: 2650, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524429

RESUMO

Chronic inflammation is essential mechanism during the development of cardiovascular and metabolic diseases. The outcome of diseases depends on the balance between the migration/accumulation of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in damaged tissue. The mechanism of macrophage migration and subsequent accumulation is still not fully understood. Currently, the amoeboid adhesion-independent motility is considered essential for leukocyte migration in the three-dimensional environment. We challenge this hypothesis by studying the contribution of leukocyte adhesive receptors, integrins αMß2, and αDß2, to three-dimensional migration of M1-polarized, M2-polarized, and resident macrophages. Both integrins have a moderate expression on M2 macrophages, while αDß2 is upregulated on M1 and αMß2 demonstrates high expression on resident macrophages. The level of integrin expression determines its contribution to macrophage migration. Namely, intermediate expression supports macrophage migration, while a high integrin density inhibits it. Using in vitro three-dimensional migration and in vivo tracking of adoptively-transferred fluorescently-labeled macrophages during the resolution of inflammation, we found that strong adhesion of M1-activated macrophages translates to weak 3D migration, while moderate adhesion of M2-activated macrophages generates dynamic motility. Reduced migration of M1 macrophages depends on the high expression of αDß2, since αD-deficiency decreased M1 macrophage adhesion and improved migration in fibrin matrix and peritoneal tissue. Similarly, the high expression of αMß2 on resident macrophages prevents their amoeboid migration, which is markedly increased in αM-deficient macrophages. In contrast, αD- and αM-knockouts decrease the migration of M2 macrophages, demonstrating that moderate integrin expression supports cell motility. The results were confirmed in a diet-induced diabetes model. αD deficiency prevents the retention of inflammatory macrophages in adipose tissue and improves metabolic parameters, while αM deficiency does not affect macrophage accumulation. Summarizing, ß2 integrin-mediated adhesion may inhibit amoeboid and mesenchymal macrophage migration or support mesenchymal migration in tissue, and, therefore, represents an important target to control inflammation.


Assuntos
Antígeno CD11b/metabolismo , Antígenos CD18/metabolismo , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Macrófagos/metabolismo , Macrófagos/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiologia , Animais , Inflamação/metabolismo , Inflamação/fisiopatologia , Leucócitos/metabolismo , Leucócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Blood ; 132(1): 78-88, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29724896

RESUMO

Early stages of inflammation are characterized by extensive oxidative insult by recruited and activated neutrophils. Secretion of peroxidases, including the main enzyme, myeloperoxidase, leads to the generation of reactive oxygen species. We show that this oxidative insult leads to polyunsaturated fatty acid (eg, docosahexaenoate), oxidation, and accumulation of its product 2-(ω-carboxyethyl)pyrrole (CEP), which, in turn, is capable of protein modifications. In vivo CEP is generated predominantly at the inflammatory sites in macrophage-rich areas. During thioglycollate-induced inflammation, neutralization of CEP adducts dramatically reduced macrophage accumulation in the inflamed peritoneal cavity while exhibiting no effect on the early recruitment of neutrophils, suggesting a role in the second wave of inflammation. CEP modifications were abundantly deposited along the path of neutrophils migrating through the 3-dimensional fibrin matrix in vitro. Neutrophil-mediated CEP formation was markedly inhibited by the myeloperoxidase inhibitor, 4-ABH, and significantly reduced in myeloperoxidase-deficient mice. On macrophages, CEP adducts were recognized by cell adhesion receptors, integrin αMß2 and αDß2 Macrophage migration through CEP-fibrin gel was dramatically augmented when compared with fibrin alone, and was reduced by ß2-integrin deficiency. Thus, neutrophil-mediated oxidation of abundant polyunsaturated fatty acids leads to the transformation of existing proteins into stronger adhesive ligands for αMß2- and αDß2-dependent macrophage migration. The presence of a carboxyl group rather than a pyrrole moiety on these adducts, resembling characteristics of bacterial and/or immobilized ligands, is critical for recognition by macrophages. Therefore, specific oxidation-dependent modification of extracellular matrix, aided by neutrophils, promotes subsequent αMß2- and αDß2-mediated migration/retention of macrophages during inflammation.


Assuntos
Antígenos CD11/metabolismo , Antígenos CD18/metabolismo , Movimento Celular , Matriz Extracelular/metabolismo , Cadeias alfa de Integrinas/metabolismo , Antígeno de Macrófago 1/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Animais , Antígenos CD11/genética , Antígenos CD18/genética , Matriz Extracelular/genética , Matriz Extracelular/patologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Cadeias alfa de Integrinas/genética , Antígeno de Macrófago 1/genética , Macrófagos/patologia , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Camundongos , Camundongos Knockout , Neutrófilos/patologia , Oxirredução
10.
J Immunol ; 198(12): 4855-4867, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28500072

RESUMO

Macrophage accumulation is a critical step during development of chronic inflammation, initiating progression of many devastating diseases. Leukocyte-specific integrin αDß2 (CD11d/CD18) is dramatically upregulated on macrophages at inflammatory sites. Previously we found that CD11d overexpression on cell surfaces inhibits in vitro cell migration due to excessive adhesion. In this study, we have investigated how inflammation-mediated CD11d upregulation contributes to macrophage retention at inflammatory sites during atherogenesis. Atherosclerosis was evaluated in CD11d-/-/ApoE-/- mice after 16 wk on a Western diet. CD11d deficiency led to a marked reduction in lipid deposition in aortas and isolated macrophages. Macrophage numbers in aortic sinuses of CD11d-/- mice were reduced without affecting their apoptosis and proliferation. Adoptive transfer of fluorescently labeled wild-type and CD11d-/- monocytes into ApoE-/- mice demonstrated similar recruitment from circulation, but reduced accumulation of CD11d-/- macrophages within the aortas. Furthermore, CD11d expression was significantly upregulated on macrophages in atherosclerotic lesions and M1 macrophages in vitro. Interestingly, expression of the related ligand-sharing integrin CD11b was not altered. This difference defines their distinct roles in the regulation of macrophage migration. CD11d-deficient M1 macrophages demonstrated improved migration in a three-dimensional fibrin matrix and during resolution of peritoneal inflammation, whereas migration of CD11b-/- M1 macrophages was not affected. These results prove the contribution of high densities of CD11d to macrophage arrest during atherogenesis. Because high expression of CD11d was detected in several inflammation-dependent diseases, we suggest that CD11d/CD18 upregulation on proinflammatory macrophages may represent a common mechanism for macrophage retention at inflammatory sites, thereby promoting chronic inflammation and disease development.


Assuntos
Aterosclerose/imunologia , Vasos Sanguíneos/patologia , Antígenos CD11/genética , Antígenos CD18/genética , Cadeias alfa de Integrinas/genética , Macrófagos/imunologia , Animais , Aorta/imunologia , Aorta/patologia , Apolipoproteínas E/deficiência , Aterosclerose/etiologia , Aterosclerose/patologia , Vasos Sanguíneos/imunologia , Antígenos CD11/imunologia , Antígenos CD18/imunologia , Dieta Ocidental , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Cadeias alfa de Integrinas/deficiência , Cadeias alfa de Integrinas/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Peritonite/imunologia , Peritonite/patologia , Ativação Transcricional , Regulação para Cima
11.
Neurotox Res ; 28(2): 154-70, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26038195

RESUMO

DNA damage is a form of cell stress and injury. Increased systemic DNA damage is related to the pathogenic development of neurodegenerative diseases. Depression occurs in a relatively high percentage of patients suffering from degenerative diseases, for whom antidepressants are often used to relieve depressive symptoms. However, few studies have attempted to elucidate why different groups of antidepressants have similar effects on relieving symptoms of depression. Previously, we demonstrated that neurotoxins N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4)- and camptothecin (CPT) induced the DNA damage response in SH-SY5Y cells, and DSP4 caused cell cycle arrest which was predominately in the S-phase. The present study shows that CPT treatment also resulted in similar cell cycle arrest. Some classic antidepressants could reduce the DNA damage response induced by DSP4 or CPT in SH-SY5Y cells. Cell viability examination demonstrated that both DSP4 and CPT caused cell death, which was prevented by spontaneous administration of some tested antidepressants. Flow cytometric analysis demonstrated that a majority of the tested antidepressants protect cells from being arrested in S-phase. These results suggest that blocking the DNA damage response may be an important pharmacologic characteristic of antidepressants. Exploring the underlying mechanisms may allow for advances in the effort to improve therapeutic strategies for depression appearing in degenerative and psychiatric diseases.


Assuntos
Antidepressivos/farmacologia , Benzilaminas/toxicidade , Camptotecina/toxicidade , Dano ao DNA/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Autorradiografia , Western Blotting , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Neuroblastoma
12.
Neurotox Res ; 27(4): 368-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25724887

RESUMO

Degeneration of the noradrenergic neurons has been reported in the brain of patients suffering from neurodegenerative diseases. However, their pathological characteristics during the neurodegenerative course and underlying mechanisms remain to be elucidated. In the present study, we used the neurotoxin camptothecin (CPT) to induce the DNA damage response in neuroblastoma SH-SY5Y cells, normal fibroblast cells, and primarily cultured locus coeruleus (LC) and raphe neurons to examine cellular responses and repair capabilities after neurotoxin exposure. To our knowledge, the present study is the first to show that noradrenergic SH-SY5Y cells are more sensitive to CPT-induced DNA damage and deficient in DNA repair, as compared to fibroblast cells. Furthermore, similar to SH-SY5Y cells, primarily cultured LC neurons are more sensitive to CPT-induced DNA damage and show a deficiency in repairing this damage. Moreover, while N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) exposure also results in DNA damage in cultured LC neurons, neither CPT nor DSP4 induce DNA damage in neuronal cultures from the raphe nuclei. Taken together, noradrenergic SH-SY5Y cells and LC neurons are sensitive to CPT-induced DNA damage and exhibit a repair deficiency, providing a mechanistic explanation for the pathological characteristics of LC degeneration when facing endogenous and environmental DNA-damaging insults in vivo.


Assuntos
Neurônios Adrenérgicos/efeitos dos fármacos , Camptotecina/toxicidade , Linhagem Celular Tumoral/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Locus Cerúleo/efeitos dos fármacos , Neurônios Adrenérgicos/metabolismo , Benzilaminas/metabolismo , Linhagem Celular Tumoral/metabolismo , Células Cultivadas , Reparo do DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Locus Cerúleo/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/metabolismo
13.
BMC Complement Altern Med ; 14: 461, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25465226

RESUMO

BACKGROUND: Naja naja atra venom (NNAV) displays diverse pharmacological actions including analgesia, anti-inflammation and immune regulation.In this study, we investigated the effects of NNAV on pulmonary fibrosis and its mechanisms of action. METHODS: To determine if Naja naja atra venom (NNAV) can produce beneficial effects on pulmonary fibrosis, two marine models of pulmonary fibrosis were produced with bleomycin (BLM) and lipopolysaccharide (LPS). NNAV (30, 90, 270 µg/kg) was orally administered once a day started five days before BLM and LPS until to the end of experiment. The effects of NNAV treatment on pulmonary injury were evaluated with arterial blood gas analysis, hydroxyproline (HYP) content assessment and HE/Masson staining. The effects of NNAV treatment on inflammatory related cytokines, fibrosis related TGF-ß/Smad signaling pathway and oxidative stress were examined. RESULTS: The results showed that NNAV improved the lung gas-exchange function and attenuated the fibrotic lesions in lung. NNAV decreased IL-1ß and TNF-α levels in serum in both pulmonary fibrosis models. NNAV inhibited the activation of NF-κB in LPS-induced and TGF-ß/Smad pathway in BLM-induced pulmonary fibrosis. Additionally, NNAV also increased the levels of SOD and GSH and reduced the levels of MDA in BLM-induced pulmonary fibrosis model. CONCLUSIONS: The present study indicates that NNAV attenuates LPS- and BLM-induced lung fibrosis. Its mechanisms of action are associated with inhibiting inflammatory response and oxidative stress. The study suggests that NNAV might be a potential therapeutic drug for treatment of pulmonary fibrosis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Venenos Elapídicos/uso terapêutico , Inflamação/tratamento farmacológico , Pulmão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Bleomicina , Venenos Elapídicos/farmacologia , Elapidae , Feminino , Fibrose , Hidroxiprolina/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , NF-kappa B/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA