Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(9): 2354-2363, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38344940

RESUMO

Hematopoietic stem cell (HSC) expansion offers a key strategy to address the source limitation and donor shortages of HSCs for the treatment of various blood disorders. Specific remodeling of the complex bone marrow microenvironment that contributes to efficient in vitro expansion of HSCs remains challenging. Here, inspired by the regions with different stiffness levels in the bone marrow niche, a three dimensional (3D) bone marrow-mimicking composite scaffold created based on gelatin-hyaluronic acid (Gel-HA) hydrogels and graphene foams (GFs) was engineered to support the in vitro expansion of HSCs. The composite scaffold was prepared by forming a photo-cross-linked Gel-HA hydrogel surrounding the GF. The "soft" Gel-HA hydrogel and "stiff" GF replicate the structure and stiffness of the vascular niche and endosteal niche in the bone marrow, respectively. Furthermore, HSCs cultured in the Gel-HA/GF scaffold proliferated well and retained the CD34+CD38- immunophenotype and pluripotency, suggesting that the Gel-HA/GF composite scaffold supported the in vitro expansion of HSCs, maintaining the primitive phenotype and the ability to differentiate into functional blood cells. Thus, the hydrogel/graphene composite scaffold offers a means of facilitating HSC expansion through structurally and mechanically mimicking bone marrow niches, demonstrating great promise for HSC transplantation.


Assuntos
Medula Óssea , Grafite , Grafite/farmacologia , Hidrogéis/química , Células-Tronco Hematopoéticas , Células da Medula Óssea
2.
ACS Appl Mater Interfaces ; 15(17): 20625-20637, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37078820

RESUMO

The limited self-repair capacity of articular cartilage has motivated the development of stem cell therapy based on artificial scaffolds that mimic the extracellular matrix (ECM) of cartilage tissue. In view of the specificity of articular cartilage, desirable tissue adhesiveness and stable mechanical properties under cyclic mechanical loads are critical for cartilage scaffolds. Herein, we developed an injectable and degradable organic-inorganic hybrid hydrogel as a cartilage scaffold based on polyhedral oligomeric silsesquioxane (POSS)-cored polyphosphate and polysaccharide. Specifically, acrylated 8-arm star-shaped POSS-poly(ethyl ethylene phosphate) (POSS-8PEEP-AC) was synthesized and cross-linked with thiolated hyaluronic acid (HA-SH) to form a degradable POSS-PEEP/HA hydrogel. Incorporation of POSS in the hydrogel increased the mechanical properties. The POSS-PEEP/HA hydrogel showed enzymatic biodegradability and favorable biocompatibility, supporting the growth and differentiation of human mesenchymal stem cells (hMSCs). The chondrogenic differentiation of encapsulated hMSCs was promoted by loading transforming growth factor-ß3 (TGF-ß3) in the hydrogel. In addition, the injectable POSS-PEEP/HA hydrogel was capable of adhering to rat cartilage tissue and resisting cyclic compression. Furthermore, in vivo results revealed that the transplanted hMSCs encapsulated in the POSS-PEEP/HA hydrogel scaffold significantly improved cartilage regeneration in rats, while the conjugation of TGF-ß3 achieved a better therapeutic effect. The present work demonstrated the potential of the injectable, biodegradable, and mechanically enhanced POSS-PEEP/HA hybrid hydrogel as a scaffold biomaterial for cartilage regeneration.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Polifosfatos , Cartilagem Articular/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Condrogênese , Regeneração , Polissacarídeos/farmacologia , Alicerces Teciduais , Engenharia Tecidual
3.
J Extracell Vesicles ; 11(8): e12255, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35932288

RESUMO

Glioma is one of the primary malignant brain tumours in adults, with a poor prognosis. Pharmacological reagents targeting glioma are limited to achieve the desired therapeutic effect due to the presence of blood-brain barrier (BBB). Effectively crossing the BBB and specifically targeting to the brain tumour are the major challenge for the glioma treatments. Here, we demonstrate that the well-defined small extracellular vesicles (sEVs) with dual-targeting drug delivery and cell-penetrating functions, modified by Angiopep-2 and trans-activator of transcription peptides, enable efficient and specific chemotherapy for glioma. The high efficiency of engineered sEVs in targeting BBB and glioma was assessed in both monolayer culture cells and BBB model in vitro, respectively. The observed high targeting efficiency was re-validated in subcutaneous tumour and orthotopic glioma mice models. After loading the doxorubicin into dual-modified functional sEVs, this specific dual-targeting delivery system could cross the BBB, reach the glioma, and penetrate the tumour. Such a mode of drug delivery significantly improved more than 2-fold survival time of glioma mice with very few side effects. In conclusion, utilization of the dual-modified sEVs represents a unique and efficient strategy for drug delivery, holding great promise for the treatments of central nervous system diseases.


Assuntos
Vesículas Extracelulares , Glioma , Animais , Linhagem Celular Tumoral , Vesículas Extracelulares/patologia , Glioma/tratamento farmacológico , Camundongos , Peptídeos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA