Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Res Bull ; 212: 110952, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636611

RESUMO

Anxiety is a prevalent mental illness known for its high incidence, comorbidity, and tendency to recur, posing significant societal and individual burdens. Studies have highlighted Interleukin-19 (IL-19) as having potential relevance in neuropsychiatric disorders. Our previous research revealed that IL-19 overexpression in colonies exacerbated anxiety-related behaviors induced by dextran sodium sulfate/stress. However, the precise role and molecular mechanisms of IL-19 in anxiety regulation remain uncertain. In this study, we initiated an acute restraint stress (ARS)-induced anxious mouse model and identified heightened expression of IL-19 and IL-20Rα in the medial prefrontal cortex (mPFC) of ARS mice. Notably, IL-19 and IL-20Rα were predominantly present in the excitatory pyramidal neurons of the mPFC under both basal and ARS conditions. Utilizing the adeno-associated virus (AAV) strategy, we demonstrated that IL-19 overexpression in the mPFC induced anxiety-related behaviors and elevated stress susceptibility. Additionally, we observed decreased protein levels of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95) in the mPFC of IL-19 overexpression mice, accompanied by reduced phosphorylation of in the p38, JNK, and Erk signaling pathways. These findings emphasize the role of IL-19 in modulating anxiety-related behaviors within the mPFC and suggest its potential as a pathological gene and therapeutic target for anxiety.


Assuntos
Ansiedade , Fator Neurotrófico Derivado do Encéfalo , Interleucinas , Sistema de Sinalização das MAP Quinases , Córtex Pré-Frontal , Estresse Psicológico , Animais , Córtex Pré-Frontal/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ansiedade/metabolismo , Camundongos , Masculino , Sistema de Sinalização das MAP Quinases/fisiologia , Interleucinas/metabolismo , Estresse Psicológico/metabolismo , Camundongos Endogâmicos C57BL , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
CNS Neurosci Ther ; 29(11): 3624-3643, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37309288

RESUMO

AIMS: Protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F) is a serine/threonine phosphatase, and its dysfunction in depression in the hippocampal dentate gyrus has been previously identified. Nevertheless, its role in depression of another critical emotion-controlling brain region, the medial prefrontal cortex (mPFC), remains unclear. We explored the functional relevance of PPM1F in the pathogenesis of depression. METHODS: The gene expression levels and colocalization of PPM1F in the mPFC of depressed mice were measured by real-time PCR, western blot and immunohistochemistry. An adeno-associated virus strategy was applied to determine the impact of knockdown or overexpression of PPM1F in the excitatory neurons on depression-related behaviors under basal and stress conditions in both male and female mice. The neuronal excitability, expression of p300 and AMPK phosphorylation levels in the mPFC after knockdown of PPM1F were measured by electrophysiological recordings, real-time PCR and western blot. The depression-related behavior induced by PPM1F knockdown after AMPKα2 knockout or the antidepressant activity of PPM1F overexpression after inhibiting acetylation activity of p300 was evaluated. RESULTS: Our results indicate that the expression levels of PPM1F were largely decreased in the mPFC of mice exposed to chronic unpredictable stress (CUS). Behavioral alterations relevant to depression emerged with short hairpin RNA (shRNA)-mediated genetic knockdown of PPM1F in the mPFC, while overexpression of PPM1F produced antidepressant activity and ameliorated behavioral responses to stress in CUS-exposed mice. Molecularly, PPM1F knockdown decreased the excitability of pyramidal neurons in the mPFC, and restoring this low excitability decreased the depression-related behaviors induced by PPM1F knockdown. PPM1F knockdown reduced the expression of CREB-binding protein (CBP)/E1A-associated protein (p300), a histone acetyltransferase (HAT), and induced hyperphosphorylation of AMPK, resulting in microglial activation and upregulation of proinflammatory cytokines. Conditional knockout of AMPK revealed an antidepressant phenotype, which can also block depression-related behaviors induced by PPM1F knockdown. Furthermore, inhibiting the acetylase activity of p300 abolished the beneficial effects of PPM1F elevation on CUS-induced depressive behaviors. CONCLUSION: Our findings demonstrate that PPM1F in the mPFC modulates depression-related behavioral responses by regulating the function of p300 via the AMPK signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Córtex Pré-Frontal , Animais , Feminino , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Antidepressivos/farmacologia , Modelos Animais de Doenças , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/farmacologia , Córtex Pré-Frontal/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Estresse Psicológico/metabolismo
3.
Arch Biochem Biophys ; 743: 109642, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37211224

RESUMO

Renal cell carcinoma is one of the most common malignancies worldwide, and kidney renal clear cell carcinoma (KIRC) is the most common histopathological type of renal cell carcinoma. However, the mechanism of KIRC progression remains poorly understood. Apolipoprotein M (ApoM) is a plasma apolipoprotein and a member of the lipid transport protein superfamily. Lipid metabolism is essential for tumor progression, and its related proteins can be used as therapeutic targets for tumors. ApoM influences the development of several cancers, but its relationship with KIRC remains unclear. In this study, we aimed to investigate the biological function of ApoM in KIRC and to reveal its potential molecular mechanisms. We found that ApoM expression was significantly reduced in KIRC and was strongly correlated with patient prognosis. ApoM overexpression significantly inhibited KIRC cell proliferation in vitro, suppressed the epithelial mesenchymal transition (EMT) of KIRC cells, and decreased their metastatic capacity. Additionally, the growth of KIRC cells was inhibited by ApoM overexpression in vivo. In addition, we found that overexpression of ApoM in KIRC attenuated Hippo-YAP protein expression and YAP stability and thus inhibited KIRC growth and progression. Therefore, ApoM may be a potential target for the treatment of KIRC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Apolipoproteínas M/metabolismo , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Rim/patologia , Neoplasias Renais/metabolismo , Transdução de Sinais , Proteínas de Sinalização YAP
4.
Neurochem Res ; 48(8): 2514-2530, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37036545

RESUMO

Depression is a common, severe, and debilitating psychiatric disorder of unclear etiology. Our previous study has shown that protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F) in the hippocampal dentate gyrus (DG) displays significant regulatory effects in depression-related behaviors. miR-132-3p plays a potential role in the etiology of depression. This study explored the effect of miR-132-3p on the onset of depression and the possible underlying mechanism for modulating PPM1F expression during the pathology of depression. We found that miR-132-3p levels in the hippocampus of depressed mice subjected to chronic unpredictable stress (CUS) were dramatically reduced, which were correlated with depression-related behaviors. Knockdown of miR-132-3p in hippocampal DG resulted in depression-related phenotypes and increased susceptibility to stress. miR-132-3p overexpression in hippocampal DG alleviated CUS-induced depression-related performance. We then screened out the potential target genes of miR-132-3p, and we found that the expression profiles of sterol regulatory element-binding transcription factor 1 (Srebf1) and forkhead box protein O3a (FOXO3a) were positively correlated with PPM1F under the condition of miR-132-3p knockdown. Finally, as anticipated, we revealed that the activities of Ca2+/calmodulin-dependent protein kinase II (CAMKII) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) were reduced, which underlies the target signaling pathway of PPM1F. In conclusion, our study suggests that miR-132-3p was designed to regulate depression-related behaviors by indirectly regulating PPM1F and targeting Srebf1 and FOXO3a, which have been linked to the pathogenesis and treatment of depression.


Assuntos
MicroRNAs , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Magnésio , Depressão/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Hipocampo/metabolismo
6.
Neoplasma ; 69(1): 80-94, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34818027

RESUMO

Glioblastoma (GBM) is the most universal and devastating primary intracranial neoplasm in the central nervous system. Urolithin A (UA) possesses many pharmacological and biological activities, but its function in GBM is not clear. CCK-8 and colony formation test were used to measure the anti-proliferative potency of UA against GBM cells. Flow cytometry was applied to evaluate cell cycle arrest and apoptosis of U251 and U118 MG cells upon UA incubation. Quantitative real-time PCR and western blotting were conducted to test the regulatory effect of UA on the expression of Sirt1 and FOXO1. Immunodeficient mice were implanted with GBM cells for in vivo validation of the anti-cancer effect of UA. We found UA repressed the proliferation, migration and invasion of glioblastoma cells, while also inhibiting the induction of colony formation ability and epithelial to mesenchymal transition (EMT) in a time- or dose-dependent manner. The does-dependent relationship of UA inducing the cell cycle arrest and apoptosis of glioblastoma cells was identified. Furthermore, UA could enhance the expression levels of Sirt1 and FOXO1 and the knockdown of Sirt1 blocked the inhibitory effects of UA on the proliferation and migration of glioblastoma cells and correspondingly modified the expression level of FOXO1. Overexpression of Sirt1 restored the despaired inhibitory effect of UA induced by Sirt1 knockout on the proliferation and migration of glioblastoma cells. In animal experiments, UA decreased the tumor size and weight of glioblastoma in xenograft nude mice and promoted the expression of Sirt1 and FOXO1 in transplanted tumors. Our findings presented in this study indicate that UA exerts a repressive effect on glioblastoma cells in vivo and in vitro by regulating the Sirt1-FOXO1 axis via the ERK and AKT pathways, indicating that UA is a new novel therapeutic candidate for the treatment of glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Cumarínicos , Transição Epitelial-Mesenquimal , Proteína Forkhead Box O1/genética , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sirtuína 1/genética
7.
Transl Neurosci ; 12(1): 469-481, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34900345

RESUMO

OBJECTIVES: Cryptotanshinone (CPT), a natural quinoid diterpene, isolated from Salvia miltiorrhiza, has shown various pharmacological properties. However, its effect on chronic unpredictable stress (CUS)-induced depression phenotypes and the underlying mechanism remain unclear. Therefore, the aim of this study was to investigate whether CPT could exert an antidepressant effect. METHODS: We investigated the effects of CPT in a CUS-induced depression model and explored whether these effects were related to the anti-inflammatory and neurogenesis promoting properties by investigating the expression levels of various signaling molecules at the mRNA and protein levels. RESULTS: Administration of CPT improved depression-like behaviors in CUS-induced mice. CPT administration increased the levels of doublecortin-positive cells and reversed the decrease in the expression levels of brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling transduction, as well as the downstream functional proteins, phosphorylated extracellular regulated protein kinases (p-ERK), and cyclic adenosine monophosphate (cAMP)-response element-binding protein levels (p-CREB) in hippocampus. CPT treatment also inhibited the activation of microglia and suppressed M1 microglial polarization, while promoting M2 microglial polarization by monitoring the expression levels of arginase 1 (Arg-1) and inducible nitric oxide synthase (iNOS), and further inhibited the expression of proinflammatory cytokines, including interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α), and increased the expression of the anti-inflammatory cytokine IL-10 by regulating nuclear factor-κB (NF-κB) activation. CONCLUSIONS: CPT relieves the depressive-like state in CUS-induced mice by enhancing neurogenesis and inhibiting inflammation through the BDNF/TrkB and NF-κB pathways and could therefore serve as a promising candidate for the treatment of depression.

8.
Asian J Surg ; 44(10): 1341-1342, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34376359

Assuntos
, Mãos , Hipocampo , Humanos
9.
Exp Neurol ; 340: 113657, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33639208

RESUMO

Major depressive disorder (MDD) is a common, serious, debilitating mental illness. Protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F), a serine/threonine phosphatase, has been reported to have multiple biological and cellular functions. However, the effects of PPM1F and its neuronal substrates on depressive behaviors remain largely unknown. Here, we showed that PPM1F is widely distributed in the hippocampus, and chronic unpredictable stress (CUS) can induce increased expression of PPM1F in the hippocampus, which was correlated with depression-associated behaviors. Overexpression of PPM1F mediated by adeno-associated virus (AAV) in the dentate gyrus (DG) produced depression-related behaviors and enhanced susceptibility to subthreshold CUS (SCUS) in both male and female mice, while, knockout of PPM1F in DG produced antidepressant phonotypes under stress conditions. Whole-cell patch-clamp recordings demonstrated that overexpression of PPM1F increased the neuronal excitability of the granule cells in the DG. Consistent with neuronal hyperexcitability, overexpression of PPM1F regulated the expression of certain ion channel genes and induced decreased phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CAMKII) and Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) in hippocampus. These results suggest that PPM1F in the DG regulates depression-related behaviors by modulating neuronal excitability, which might be an important pathological gene for depression or other mental diseases.


Assuntos
Giro Denteado/metabolismo , Depressão/metabolismo , Neurônios/metabolismo , Fosfoproteínas Fosfatases/biossíntese , Animais , Depressão/genética , Depressão/psicologia , Feminino , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas Fosfatases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA