Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Biomaterials ; 311: 122699, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38981153

RESUMO

The treatment of osteoporotic bone defects poses a challenge due to the degradation of the skeletal vascular system and the disruption of local bone metabolism within the osteoporotic microenvironment. However, it is feasible to modulate the disrupted local bone metabolism imbalance through enhanced vascularization, a theory termed "vascularization-bone metabolic balance". This study developed a 3D-printed polycaprolactone (PCL) scaffold modified with EPLQLKM and SVVYGLR peptides (PCL-SE). The EPLQLKM peptide attracts bone marrow-derived mesenchymal stem cells (BMSCs), while the SVVYGLR peptide enhances endothelial progenitor cells (EPCs) vascular differentiation, thus regulating bone metabolism and fostering bone regeneration through the paracrine effects of EPCs. Further mechanistic research demonstrated that PCL-SE promoted the vascularization of EPCs, activating the Notch signaling pathway in BMSCs, leading to the upregulation of osteogenesis-related genes and the downregulation of osteoclast-related genes, thereby restoring bone metabolic balance. Furthermore, PCL-SE facilitated the differentiation of EPCs into "H"-type vessels and the recruitment of BMSCs to synergistically enhance osteogenesis, resulting in the regeneration of normal microvessels and bone tissues in cases of femoral condylar bone defects in osteoporotic SD rats. This study suggests that PCL-SE supports in-situ vascularization, remodels bone metabolic translational balance, and offers a promising therapeutic regimen for osteoporotic bone defects.


Assuntos
Regeneração Óssea , Homeostase , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Osteogênese , Osteoporose , Impressão Tridimensional , Ratos Sprague-Dawley , Alicerces Teciduais , Animais , Regeneração Óssea/efeitos dos fármacos , Osteoporose/metabolismo , Osteoporose/terapia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Osteogênese/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Poliésteres/química , Diferenciação Celular/efeitos dos fármacos , Feminino , Ratos , Células Progenitoras Endoteliais/metabolismo , Osso e Ossos/metabolismo
3.
Cell Death Dis ; 15(6): 421, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886351

RESUMO

Targeted and immunotherapy combined with interventional therapy can improve the prognosis of advanced cancer patients, and it has become a hot spot to find the new therapeutic schemes, but most of which are not satisfactory. Single-cell RNA sequencing was performed in PDX mouse models with or without TCC therapy. 2-'O-Methylation modification and multiplex immunofluorescence staining were used to explore the function and mechanism of SAMD4B in the immune context of HCC. Here, we propose for the first time a synergistic immunochemotherapy that exerts a potent antitumour effect for patients with advanced hepatocellular carcinoma (HCC) in clinical practice based on three common antitumour drugs and found that HCC patients with new synergistic immunochemotherapy had better three-year overall survival (p = 0.004) and significantly higher survival ratio (increased by 2.3 times) than the control group. We further reveal the immunoregulatory mechanism of synergistic immunochemotherapy through 2'-O-Methylation modification mediated by SAMD4B, a tumour suppressor gene. Mechanistically, SAMD4B, increased by the reduced mutations of upstream genes NOTCH1 and NOTCH2, affected the instability of APOA2 mRNA by 2-'O-Methylation modification of the C-terminus. The decreased APOA2 further attenuated programmed death ligand 1 (PD-L1) level with a direct interaction pattern. The high-SAMD4B tumour tissues contained fewer native CD29+CD8+ T cells, which improved immune microenvironment to achieve the effect of antitumour effect. Overall, we developed a potent synergistic immunochemotherapy strategy that exerts an efficient anti-HCC effect inducing SAMD4B-APOA2-PD-L1 axis to inhibit tumour immune evasion.


Assuntos
Antígeno B7-H1 , Carcinoma Hepatocelular , Imunoterapia , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Animais , Humanos , Camundongos , Imunoterapia/métodos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Masculino , Microambiente Tumoral , Feminino
4.
Small ; : e2402040, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829027

RESUMO

The extracellular matrix (ECM) engages in regulatory interactions with cell surface receptors through its constituent proteins and polysaccharides. Therefore, nano-sized extracellular matrix conjugated with doxorubicin (DOX) is utilized to produce extracellular matrix-drug conjugates (ECM-DOX) tailored for targeted delivery to cancer cells. The ECM-DOX nanoparticles exhibit rod-like morphology, boasting a commendable drug loading capacity of 4.58%, coupled with acid-sensitive drug release characteristics. Notably, ECM-DOX nanoparticles enhance the uptake by tumor cells and possess the ability to penetrate endothelial cells and infiltrate tumor multicellular spheroids. Mechanistic insights reveal that the internalization of ECM-DOX nanoparticle is facilitated through clathrin-mediated endocytosis and macropinocytosis, intricately involving hyaluronic acid receptors and integrins. Pharmacokinetic assessments unveil a prolonged blood half-life of ECM-DOX nanoparticles at 3.65 h, a substantial improvement over the 1.09 h observed for free DOX. A sustained accumulation effect of ECM-DOX nanoparticles at tumor sites, with drug levels in tumor tissues surpassing those of free DOX by several-fold. The profound therapeutic impact of ECM-DOX nanoparticles is evident in their notable inhibition of tumor growth, extension of median survival time in animals, and significant reduction in DOX-induced cardiotoxicity. The ECM platform emerges as a promising carrier for avant-garde nanomedicines in the realm of cancer treatment.

6.
Adv Mater ; 36(30): e2402968, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38706203

RESUMO

Efferocytosis-mediated inflammatory reversal plays a crucial role in bone repairing process. However, in refractory bone defects, the macrophage continual efferocytosis may be suppressed due to the disrupted microenvironment homeostasis, particularly the loss of apoptotic signals and overactivation of intracellular oxidative stress. In this study, a polydopamine-coated short fiber matrix containing biomimetic "apoptotic signals" to reconstruct the microenvironment and reactivate macrophage continual efferocytosis for inflammatory reversal and bone defect repair is presented. The "apoptotic signals" (AM/CeO2) are prepared using CeO2 nanoenzymes with apoptotic neutrophil membrane coating for macrophage recognition and oxidative stress regulation. Additionally, a short fiber "biomimetic matrix" is utilized for loading AM/CeO2 signals via abundant adhesion sites involving π-π stacking and hydrogen bonding interactions. Ultimately, the implantable apoptosis-mimetic nanoenzyme/short-fiber matrixes (PFS@AM/CeO2), integrating apoptotic signals and biomimetic matrixes, are constructed to facilitate inflammatory reversal and reestablish the pro-efferocytosis microenvironment. In vitro and in vivo data indicate that the microenvironment biomimetic short fibers can activate macrophage continual efferocytosis, leading to the suppression of overactivated inflammation. The enhanced repair of rat femoral defect further demonstrates the osteogenic potential of the pro-efferocytosis strategy. It is believed that the regulation of macrophage efferocytosis through microenvironment biomimetic materials can provide a new perspective for tissue repair.


Assuntos
Apoptose , Materiais Biomiméticos , Cério , Inflamação , Macrófagos , Polímeros , Animais , Cério/química , Cério/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Inflamação/tratamento farmacológico , Ratos , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Apoptose/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , Regeneração Óssea/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Biomimética/métodos , Osteogênese/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Eferocitose
7.
J Nanobiotechnology ; 22(1): 289, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802863

RESUMO

By integrating magnetic resonance-visible components with scaffold materials, hydrogel microspheres (HMs) become visible under magnetic resonance imaging(MRI), allowing for non-invasive, continuous, and dynamic monitoring of the distribution, degradation, and relationship of the HMs with local tissues. However, when these visualization components are physically blended into the HMs, it reduces their relaxation rate and specificity under MRI, weakening the efficacy of real-time dynamic monitoring. To achieve MRI-guided in vivo monitoring of HMs with tissue repair functionality, we utilized airflow control and photo-crosslinking methods to prepare alginate-gelatin-based dual-network hydrogel microspheres (G-AlgMA HMs) using gadolinium ions (Gd (III)), a paramagnetic MRI contrast agent, as the crosslinker. When the network of G-AlgMA HMs degrades, the cleavage of covalent bonds causes the release of Gd (III), continuously altering the arrangement and movement characteristics of surrounding water molecules. This change in local transverse and longitudinal relaxation times results in variations in MRI signal values, thus enabling MRI-guided in vivo monitoring of the HMs. Additionally, in vivo data show that the degradation and release of polypeptide (K2 (SL)6 K2 (KK)) from G-AlgMA HMs promote local vascular regeneration and soft tissue repair. Overall, G-AlgMA HMs enable non-invasive, dynamic in vivo monitoring of biomaterial degradation and tissue regeneration through MRI, which is significant for understanding material degradation mechanisms, evaluating biocompatibility, and optimizing material design.


Assuntos
Alginatos , Meios de Contraste , Gadolínio , Hidrogéis , Imageamento por Ressonância Magnética , Microesferas , Imageamento por Ressonância Magnética/métodos , Gadolínio/química , Animais , Alginatos/química , Hidrogéis/química , Meios de Contraste/química , Cicatrização/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Gelatina/química , Camundongos , Alicerces Teciduais/química
8.
Biomaterials ; 309: 122615, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38759486

RESUMO

Enhancing the effectiveness of platelet-rich plasma (PRP) for endometrial regeneration is challenging, due to its limited mechanical properties and burst release of growth factors. Here, we proposed an injectable interpenetrating dual-network hydrogel that can locationally activate PRP within the uterine cavity, sustained release growth factors and further address the insufficient therapeutic efficacy. Locational activation of PRP is achieved using the dual-network hydrogel. The phenylboronic acid (PBA) modified methacrylated hyaluronic acid (HAMA) dispersion chelates Ca2+ by carboxy groups and polyphenol groups, and in situ crosslinked with PRP-loaded polyvinyl alcohol (PVA) dispersion by dynamic borate ester bonds thus establishing the soft hydrogel. Subsequently, in situ photo-crosslinking technology is employed to enhance the mechanical performance of hydrogels by initiating free radical polymerization of carbon-carbon double bonds to form a dense network. The PRP-hydrogel significantly promoted the endometrial cell proliferation, exhibited strong pro-angiogenic effects, and down-regulated the expression of collagen deposition genes by inhibiting the TGF-ß1-SMAD2/3 pathway in vitro. In vivo experiments using a rat intrauterine adhesion (IUA) model showed that the PRP-hydrogel significantly promoted endometrial regeneration and restored uterine functionality. Furthermore, rats treated with the PRP-hydrogel displayed an increase in the number of embryos, litter size, and birth rate, which was similar to normal rats. Overall, this injectable interpenetrating dual-network hydrogel, capable of locational activation of PRP, suggests a new therapeutic approach for endometrial repair.


Assuntos
Endométrio , Hidrogéis , Plasma Rico em Plaquetas , Ratos Sprague-Dawley , Regeneração , Animais , Feminino , Endométrio/efeitos dos fármacos , Hidrogéis/química , Regeneração/efeitos dos fármacos , Ratos , Proliferação de Células/efeitos dos fármacos , Ácido Hialurônico/química , Álcool de Polivinil/química , Humanos , Ácidos Borônicos/química , Injeções , Aderências Teciduais
9.
Adv Sci (Weinh) ; 11(23): e2401368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38600702

RESUMO

The microvascular network plays an important role in providing nutrients to the injured tissue and exchanging various metabolites. However, how to achieve efficient penetration of the injured tissue is an important bottleneck restricting the reconstruction of microvascular network. Herein, the hydrogel precursor solution can efficiently penetrate the damaged tissue area, and ultrasound triggers the release of thrombin from liposomes in the solution to hydrolyze fibrinogen, forming a fibrin solid hydrogel network in situ with calcium ions and transglutaminase as catalysts, effectively solving the penetration impedance bottleneck of damaged tissues and ultimately significantly promoting the formation of microvascular networks within tissues. First, the fibrinogen complex solution is effectively permeated into the injured tissue. Second, ultrasound triggered the release of calcium ions and thrombin, activates transglutaminase, and hydrolyzes fibrinogen. Third, fibrin monomers are catalyzed to form fibrin hydrogels in situ in the damaged tissue area. In vitro studies have shown that the fibrinogen complex solution effectively penetrated the artificial bone tissue within 15 s after ultrasonic triggering, and formed a hydrogel after continuous triggering for 30 s. Overall, this innovative strategy effectively solved the problem of penetration resistance of ultrasound-triggered hydrogels in the injured tissues, and finally activates in situ microvascular networks regeneration.


Assuntos
Hidrogéis , Hidrogéis/química , Animais , Fibrinogênio/metabolismo , Fibrinogênio/química , Microvasos/metabolismo , Fibrina/metabolismo , Fibrina/química , Camundongos , Ondas Ultrassônicas , Trombina/metabolismo , Cálcio/metabolismo
10.
Adv Mater ; 36(24): e2312556, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563392

RESUMO

Cluster-like collective cell migration of fibroblasts is one of the main factors of adhesion in injured tissues. In this research, a microdot biomaterial system is constructed using α-helical polypeptide nanoparticles and anti-inflammatory micelles, which are prepared by ring-opening polymerization of α-amino acids-N-carboxylic anhydrides (NCAs) and lactide, respectively. The microdot biomaterial system slowly releases functionalized polypeptides targeting mitochondria and promoting the influx of extracellular calcium ions under the inflammatory environment, thus inhibiting the expression of N-cadherin mediating cell-cell interaction, and promoting apoptosis of cluster fibroblasts, synergistically inhibiting the migration of fibroblast clusters at the site of tendon injury. Meanwhile, the anti-inflammatory micelles are celecoxib (Cex) solubilized by PEG/polyester, which can improve the inflammatory microenvironment at the injury site for a long time. In vitro, the microdot biomaterial system can effectively inhibit the migration of the cluster fibroblasts by inhibiting the expression of N-cadherin between cell-cell and promoting apoptosis. In vivo, the microdot biomaterial system can promote apoptosis while achieving long-acting anti-inflammation effects, and reduce the expression of vimentin and α-smooth muscle actin (α-SMA) in fibroblasts. Thus, this microdot biomaterial system provides new ideas for the prevention and treatment of tendon adhesion by inhibiting the cluster migration of fibroblasts.


Assuntos
Materiais Biocompatíveis , Movimento Celular , Fibroblastos , Movimento Celular/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/citologia , Animais , Nanopartículas/química , Peptídeos/química , Peptídeos/farmacologia , Apoptose/efeitos dos fármacos , Celecoxib/farmacologia , Celecoxib/química , Caderinas/metabolismo , Camundongos , Traumatismos dos Tendões/tratamento farmacológico , Traumatismos dos Tendões/patologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Adesão Celular/efeitos dos fármacos , Aderências Teciduais/prevenção & controle , Aderências Teciduais/tratamento farmacológico
11.
Adv Sci (Weinh) ; 11(20): e2306555, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477548

RESUMO

The dynamic balance between hypoxia and oxidative stress constitutes the oxygen-related microenvironment in injured tissues. Due to variability, oxygen homeostasis is usually not a therapeutic target for injured tissues. It is found that when administered intravenously, mesenchymal stem cells (MSCs) and in vitro induced apoptotic vesicles (ApoVs) exhibit similar apoptotic markers in the wound microenvironment where hypoxia and oxidative stress co-existed, but MSCs exhibited better effects in promoting angiogenesis and wound healing. The derivation pathway of ApoVs by inducing hypoxia or oxidative stress in MSCs to simulate oxygen homeostasis in injured tissues is improved. Two types of oxygen-related environmental stressed ApoVs are identified that directly target endothelial cells (ECs) for the accurate regulation of vascularization. Compared to normoxic and hypoxic ones, oxidatively stressed ApoVs (Oxi-ApoVs) showed the strongest tube formation capacity. Different oxygen-stressed ApoVs deliver similar miRNAs, which leads to the broad upregulation of EC phosphokinase activity. Finally, local delivery of Oxi-ApoVs-loaded hydrogel microspheres promotes wound healing. Oxi-ApoV-loaded microspheres achieve controlled ApoV release, targeting ECs by reducing the consumption of inflammatory cells and adapting to the proliferative phase of wound healing. Thus, the biogenerated apoptotic vesicles responding to oxygen-related environmental stress can target ECs to promote vascularization.


Assuntos
Apoptose , Células Endoteliais , Estresse Oxidativo , Oxigênio , Animais , Células Endoteliais/metabolismo , Oxigênio/metabolismo , Cicatrização/fisiologia , Camundongos , Humanos , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo
12.
Adv Sci (Weinh) ; 11(20): e2306507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38504456

RESUMO

The prevalence of infertility caused by endometrial defects is steadily increasing, posing a significant challenge to women's reproductive health. In this study, injectable "homing-like" bioactive decellularized extracellular matrix short-fibers (DEFs) of porcine skin origin are innovatively designed for endometrial and fertility restoration. The DEFs can effectively bind to endometrial cells through noncovalent dipole interactions and release bioactive growth factors in situ. In vitro, the DEFs effectively attracted endometrial cells through the "homing-like" effect, enabling cell adhesion, spreading, and proliferation on their surface. Furthermore, the DEFs effectively facilitated the proliferation and angiogenesis of human primary endometrial stromal cells (HESCs) and human umbilical vein endothelial cells (HUVECs), and inhibited fibrosis of pretreated HESCs. In vivo, the DEFs significantly accelerated endometrial restoration, angiogenesis, and receptivity. Notably, the deposition of endometrial collagen decreased from 41.19 ± 2.16% to 14.15 ± 1.70% with DEFs treatment. Most importantly, in endometrium-injured rats, the use of DEFs increased the live birth rate from 30% to an impressive 90%, and the number and development of live births close to normal rats. The injectable "homing-like" bioactive DEFs system can achieve efficient live births and intrauterine injection of DEFs provides a new promising clinical strategy for endometrial factor infertility.


Assuntos
Endométrio , Nascido Vivo , Feminino , Animais , Ratos , Suínos , Humanos , Modelos Animais de Doenças , Gravidez , Matriz Extracelular Descelularizada , Ratos Sprague-Dawley , Células Endoteliais da Veia Umbilical Humana
13.
Acta Biomater ; 179: 220-233, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554890

RESUMO

An effective treatment for the irregular partial-thickness cartilage defect in the early stages of osteoarthritis (OA) is lacking. Cartilage tissue engineering is effective for treating full-thickness cartilage defects with limited area. In this study, we designed an injectable multifunctional poly(lactic-co-glycolic acid) (PLGA) microsphere to repair partial-thickness cartilage defects. The microsphere was grafted with an E7 peptide after loading the microsphere with kartogenin (KGN) and modifying the outer layer through dopamine self-polymerization. The microsphere could adhere to the cartilage defect, recruit synovial mesenchymal stem cells (SMSCs) in situ, and stimulate their differentiation into chondrocytes after injection into the articular cavity. Through in vivo and in vitro experiments, we demonstrated the ability of multifunctional microspheres to adhere to cartilage matrix, recruit SMSCs, and promote their differentiation into cartilage. Following treatment, the cartilage surface of the model group with partial-thickness cartilage defect showed smooth recovery, and the glycosaminoglycan content remained normal; the untreated control group showed significant progression of OA. The microsphere, a framework for cartilage tissue engineering, promoted the expression of SMSCs involved in cartilage repair while adapting to cell migration and growth. Thus, for treating partial-thickness cartilage defects in OA, this innovative carrier system based on stem cell therapy can potentially improve therapeutic outcomes. STATEMENT OF SIGNIFICANCE: Mesenchymal stem cells (MSCs) therapy is effective in the repair of cartilage injury. However, because of the particularity of partial-thickness cartilage injury, it is difficult to recruit enough seed cells in situ, and there is a lack of suitable scaffolds for cell migration and growth. Here, we developed polydopamine surface-modified PLGA microspheres (PMS) containing KGN and E7 peptides. The adhesion ability of the microspheres is facilitated by the polydopamine layer wrapped in them; thus, the microspheres can adhere to the injured cartilage and recruit MSCs, thereby promoting their differentiation into chondrocytes and accomplishing cartilage repair. The multifunctional microspheres can be used as a safe and potential method to treat partial-thickness cartilage defects in OA.


Assuntos
Anilidas , Células-Tronco Mesenquimais , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Coelhos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Diferenciação Celular/efeitos dos fármacos , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Cartilagem Articular/patologia , Ácido Poliglicólico/química , Ácido Láctico/química , Injeções , Matriz Extracelular/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Engenharia Tecidual/métodos
14.
Biomaterials ; 306: 122475, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38306733

RESUMO

Although tumor-infiltrating T lymphocytes (TIL-Ts) play a crucial role in solid tumor immunotherapy, their clinical application has been limited because of the immunosuppressive microenvironment. Herein, we developed an injectable hydrogel microsphere-integrated training court (MS-ITC) to inspire the function of TIL-Ts and amplify TIL-Ts, through grafting with anti-CD3 and anti-CD28 antibodies and bovine serum albumin nanoparticles encapsulated with IL-7 and IL-15. MS-ITC provided the T-cell receptor and co-stimulatory signals required for TIL-Ts activation and IL-7/IL-15 signals for TIL-Ts expansion. Afterward, the MS-ITC was injected locally into the osteosarcoma tumor tissue in mice. MS-ITC suppressed the growth of primary osteosarcoma by more than 95 %, accompanied with primed and expanded TIL-Ts in the tumor tissues, compromising significantly increased CD8+ T and memory T cells, thereby enhancing the anti-tumor effect. Together, this work provides an injectable hydrogel microsphere-integrated training platform capable of inspiring TIL-Ts potential for a range of solid tumor immunotherapy.


Assuntos
Interleucina-15 , Neoplasias , Animais , Camundongos , Hidrogéis , Interleucina-7 , Microesferas , Citotoxicidade Imunológica , Linfócitos do Interstício Tumoral , Linfócitos T , Interleucina-2/farmacologia , Ativação Linfocitária , Microambiente Tumoral
15.
Med ; 5(2): 148-168.e8, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38340709

RESUMO

BACKGROUND: Adipose tissue-derived stem cell-derived apoptotic bodies (ADSC-ABs) have shown great potential for immunomodulation and regeneration, particularly in diabetic wound therapy. However, their local application has been limited by unclear regulatory mechanisms, rapid clearance, and short tissue retention times. METHODS: We analyzed the key role molecules and regulatory pathways of ADSC-ABs in regulating inflammatory macrophages by mRNA sequencing and microRNA (miRNA) sequencing and then verified them by gene knockdown. To prevent rapid clearance, we employed microfluidics technology to prepare methacrylate-anhydride gelatin (GelMA) microspheres (GMS) for controlled release of ABs. Finally, we evaluated the effectiveness of ADSC-AB-laden GMSs (ABs@GMSs) in a diabetic rat wound model. FINDINGS: Our results demonstrated that ADSC-ABs effectively balanced macrophage inflammatory polarization through the janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, mediated by miR-20a-5p. Furthermore, we showed that AB@GMSs had good biocompatibility, significantly delayed local clearance of ABs, and ameliorated diabetic wound inflammation and promoted vascularization, thus facilitating its healing. CONCLUSIONS: Our study reveals the regulatory mechanism of ADSC-ABs in balancing macrophage inflammatory polarization and highlightsthe importance of delaying their local clearance by GMSs. These findings have important implications for the development of novel therapies for diabetic wound healing. FUNDING: This research was supported by the National Key Research and Development Program of China (2020YFA0908200), National Natural Science Foundation of China (82272263, 82002053, 32000937, and 82202467), Shanghai "Rising Stars of Medical Talents" Youth Development Program (22MC1940300), Shanghai Municipal Health Commission (20204Y0354), and Shanghai Science and Technology Development Funds (22YF1421400).


Assuntos
Diabetes Mellitus , Vesículas Extracelulares , Ratos , Animais , China , Diabetes Mellitus/metabolismo , Cicatrização/genética , Células-Tronco/metabolismo , Macrófagos/metabolismo
16.
Adv Healthc Mater ; 13(5): e2302088, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38079529

RESUMO

Bone defects stemming from tumorous growths, traumatic events, and diverse conditions present a profound conundrum in clinical practice and research. While bone has the inherent ability to regenerate, substantial bone anomalies require bone regeneration techniques. Bone organoids represent a new concept in this field, involving the 3D self-assembly of bone-associated stem cells guided in vitro with or without extracellular matrix material, resulting in a tissue that mimics the structural, functional, and genetic properties of native bone tissue. Within the scientific panorama, bone organoids ascend to an esteemed status, securing significant experimental endorsement. Through a synthesis of current literature and pioneering studies, this review offers a comprehensive survey of the bone organoid paradigm, delves into the quintessential architecture and ontogeny of bone, and highlights the latest progress in bone organoid fabrication. Further, existing challenges and prospective directions for future research are identified, advocating for interdisciplinary collaboration to fully harness the potential of this burgeoning domain. Conclusively, as bone organoid technology continues to mature, its implications for both clinical and research landscapes are poised to be profound.


Assuntos
Organoides , Células-Tronco , Estudos Prospectivos , Matriz Extracelular
17.
Small Methods ; 8(8): e2301375, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38143276

RESUMO

Stable regulation of protein fate is a prerequisite for successful bone tissue repair. As a ubiquitin-specific protease (USP), USP26 can stabilize the protein fate of ß-catenin to promote the osteogenic activity of mesenchymal cells (BMSCs) and significantly increased bone regeneration in bone defects in aged mice. However, direct transfection of Usp26 in vivo is inefficient. Therefore, improving the efficient expression of USP26 in target cells is the key to promoting bone tissue repair. Herein, 3D printing combined with microfluidic technology is applied to construct a functional microunit (protein fate regulating functional microunit, denoted as PFFM), which includes GelMA microspheres loaded with BMSCs overexpressing Usp26 and seeded into PCL 3D printing scaffolds. The PFFM provides a microenvironment for BMSCs, significantly promotes adhesion, and ensures cell activity and Usp26 supplementation that stabilizes ß-catenin protein significantly facilitates BMSCs to express osteogenic phenotypes. In vivo experiments have shown that PFFM effectively accelerates intervertebral bone fusion. Therefore, PFFM can provide new ideas and alternatives for using USP26 for intervertebral fusion and other hard-to-repair bone defect diseases and is expected to provide clinical translational potential in future treatments.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Camundongos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , beta Catenina/metabolismo , beta Catenina/genética , Impressão Tridimensional , Alicerces Teciduais/química , Regeneração Óssea , Fusão Vertebral
18.
Small ; : e2309060, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063818

RESUMO

The cellular functions, such as tissue-rebuilding ability, can be directly affected by the metabolism of cells. Moreover, the glucose metabolism is one of the most important processes of the metabolism. However, glucose cannot be efficiently converted into energy in cells under ischemia hypoxia conditions. In this study, a high-energy intermediate fructose hydrogel (HIFH) is developed by the dynamic coordination between sulfhydryl-functionalized bovine serum albumin (BSA-SH), the high-energy intermediate in glucose metabolism (fructose-1,6-bisphosphate, FBP), and copper ion (Cu2+ ). This hydrogel system is injectable, self-healing, and biocompatible, which can intracellularly convert energy with high efficacy by regulating the glucose metabolism in situ. Additionally, the HIFH can greatly boost cell antioxidant capacity and increase adenosine triphosphate (ATP) in the ischemia anoxic milieu by roughly 1.3 times, improving cell survival, proliferation and physiological functions in vitro. Furthermore, the ischemic skin tissue model is established in rats. The HIFH can speed up the healing of damaged tissue by promoting angiogenesis, lowering reactive oxygen species (ROS), and eventually expanding the healing area of the damaged tissue by roughly 1.4 times in vivo. Therefore, the HIFH can provide an impressive perspective on efficient in situ cell energy supply of damaged tissue.

19.
Nat Commun ; 14(1): 7632, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993447

RESUMO

The harsh urethral microenvironment (UME) after trauma severely hinders the current hydrogel-based urethral repair. In fact, four-dimensional (4D) consideration to mimic time-dependent physiological processes is essential for scarless urethral reconstruction, which requires balancing extracellular matrix (ECM) deposition and remodeling at different healing stages. In this study, we develop a UME-adaptable 4D hydrogel dressing to sequentially provide an early-vascularized microenvironment and later-antifibrogenic microenvironment for scarless urethral reconstruction. With the combination of dynamic boronic ester crosslinking and covalent photopolymerization, the resultant gelatin methacryloyl phenylboronic acid/cis-diol-crosslinked (GMPD) hydrogels exhibit mussel-mimetic viscoelasticity, satisfactory adhesion, and acid-reinforced stability, which can adapt to harsh UME. In addition, a temporally on-demand regulatory (TOR) technical platform is introduced into GMPD hydrogels to create a time-dependent 4D microenvironment. As a result, physiological urethral recovery is successfully mimicked by means of an early-vascularized microenvironment to promote wound healing by activating the vascular endothelial growth factor (VEGF) signaling pathway, as well as a later-antifibrogenic microenvironment to prevent hypertrophic scar formation by timing transforming growth factor-ß (TGFß) signaling pathway inhibition. Both in vitro molecular mechanisms of the physiological healing process and in vivo scarless urethral reconstruction in a rabbit model are effectively verified, providing a promising alternative for urethral injury treatment.


Assuntos
Hidrogéis , Procedimentos de Cirurgia Plástica , Animais , Coelhos , Hidrogéis/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Cicatrização , Bandagens
20.
Small Methods ; 7(11): e2300681, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37670530

RESUMO

Intraperitoneal sporadic tumor is a common and complicated syndrome in cancers, causing a high rate of death, and people find that intraperitoneal chemotherapy (IPC) can treat intraperitoneal sporadic tumors better than intravenous chemotherapy and surgery. However, the effectiveness and side effects of IPC are controversial, and the operation process of IPC is complicated. Herein, the injectable paclitaxel-loaded (PTX-loaded) electrospun short fibers are constructed through a series process of electrospinning, homogenizing, crosslinking, and subsequent polydopamine coating and folate acid (FA) modification. The evenly dispersed short fibers exhibited effective tumor cell killing and good injectable ability, which is convenient to use and greatly improved the complex operation procedure. Mussel-like protein poly-dopamine coating and FA modification endowed short fibers with the ability of targeted adhesion to tumors, and therefore the short fibers further acted as a kind of micro membrane that could release drugs to tumors at close range, maintaining local high drug concentration and prevent paclitaxel killing normal tissues. Thus, the target-adhesive injectable electrospun short fibers are expected to be the potential candidate for cancer treatment, especially the intraperitoneal sporadic tumors, which are hard to treat by surgery or intravenous chemotherapy.


Assuntos
Túnica Adventícia , Neoplasias , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Proteínas , Perfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA