Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11947, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789486

RESUMO

A research model combining a disease and syndrome can provide new ideas for the treatment of ischemic stroke. In the field of traditional Chinese medicine, blood stasis and toxin (BST) syndrome is considered an important syndrome seen in patients with ischemic stroke (IS). However, the biological basis of IS-BST syndrome is currently not well understood. Therefore, this study aimed to explore the biological mechanism of IS-BST syndrome. This study is divided into two parts: (1) establishment of an animal model of ischemic stroke disease and an animal model of BST syndrome in ischemic stroke; (2) use of omics methods to identify differentially expressed genes and metabolites in the models. We used middle cerebral artery occlusion (MCAO) surgery to establish the disease model, and utilized carrageenan combined with active dry yeast and MCAO surgery to construct the IS-BST syndrome model. Next, we used transcriptomics and metabolomics methods to explore the differential genes and metabolites in the disease model and IS-BST syndrome model. It is found that the IS-BST syndrome model exhibited more prominent characteristics of IS disease and syndrome features. Both the disease model and the IS-BST syndrome model share some common biological processes, such as thrombus formation, inflammatory response, purine metabolism, sphingolipid metabolism, and so on. Results of the "gene-metabolite" network revealed that the IS-BST syndrome model exhibited more pronounced features of complement-coagulation cascade reactions and amino acid metabolism disorders. Additionally, the "F2 (thrombin)-NMDAR/glutamate" pathway was coupled with the formation process of the blood stasis and toxin syndrome. This study reveals the intricate mechanism of IS-BST syndrome, offering a successful model for investigating the combination of disease and syndrome.


Assuntos
Modelos Animais de Doenças , AVC Isquêmico , Medicina Tradicional Chinesa , Metabolômica , Transcriptoma , Animais , Metabolômica/métodos , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , Medicina Tradicional Chinesa/métodos , Masculino , Redes Reguladoras de Genes , Ratos , Perfilação da Expressão Gênica , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/genética , Síndrome , Ratos Sprague-Dawley
2.
J Chem Theory Comput ; 20(11): 4499-4513, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38394691

RESUMO

Time-lagged independent component analysis (tICA) and the Markov state model (MSM) have been extensively employed for extracting conformational dynamics and kinetic community networks from unbiased trajectory ensembles. However, these techniques may not be the optimal choice for elucidating transition mechanisms within low-dimensional representations, especially for intricate biosystems. Unraveling the association mechanism in such complex systems always necessitates permutations of several essential independent components or collective variables, a process that is inherently obscure and may require empirical knowledge for selection. To address these challenges, we have implemented an integrated unsupervised dimension reduction model: uniform manifold approximation and projection (UMAP) with hierarchy density-based spatial clustering of applications with noise (HDBSCAN). This approach effectively generates low-dimensional configurational embeddings. The hierarchical application of this architecture, in conjunction with MSM, reveals global kinetic connectivity while identifying local conformational states. Consequently, our methodology establishes a multiscale mechanistic elucidation framework. Leveraging the benefits of the uniform sample distribution and a denoising approach, our model demonstrates robustness in preserving global and local data structures compared to traditional dimension reduction methods in the field of MD analysis area. The interpretability of hyperparameter selection and compatibility with downstream tasks are cross-validated across various simulation data sets, utilizing both computational evaluation metrics and experimental kinetic observables. Furthermore, the predicted Mcl1-BH3 association kinetics (0.76 s-1) is in close agreement with surface plasmon resonance experiments (0.12 s-1), affirming the plausibility of the identified pathway composed of representative conformations. We anticipate that the devised workflow will serve as a foundational framework for studying recognition patterns in complex biological systems. Its contributions extend to the exploration of protein functional dynamics and rational drug design, offering a potent avenue for advancing research in these domains.


Assuntos
Aprendizado de Máquina , Simulação de Dinâmica Molecular , Termodinâmica , Cinética , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Cadeias de Markov , Humanos
3.
Aging (Albany NY) ; 16(3): 2953-2977, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38329443

RESUMO

OBJECTIVE: The extracellular phosphoprotein, secreted phosphoprotein 1 (SPP1), plays a crucial role in various tumors and regulating the immune system. This study aimed to evaluate its prognostic value and relationship to immune infiltration in lung adenocarcinoma (LUAD). METHODS: In the TCGA and GEO datasets, the information on clinic and transcriptome analysis of SPP1 in non-small-cell lung cancer (NSCLC) was examined accordingly. The association of SPP1 expression with overall survival and clinicopathologic characteristics was investigated by univariate and multivariate analysis. CancerSEA database was utilized to investigate the role of SPP1 at the cellular level by single-cell analysis. Additionally, the CIBERSORT algorithm was utilized to assess the correlation among the immune cells that infiltrated. RESULTS: NSCLC tissues exhibited a notable rise in SPP1 expression compared with that of normal tissues. Furthermore, the overexpression of SPP1 was substantially associated with clinicopathological features and unfavorable survival outcomes in individuals with LUAD, whereas no such correlation was observed in lung squamous cell carcinoma. Immune cells that infiltrate tumors and their corresponding genes were associated with SPP1 expression levels in LUAD. CONCLUSIONS: SPP1 is a reliable indicator for assessing LUAD immune infiltration status and prognosis. With this approach, SPP1 can help earlier LUAD diagnosis and act as a possible immunotherapy target.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Osteopontina/genética , Prognóstico , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética
4.
Trends Pharmacol Sci ; 45(3): 268-280, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38296675

RESUMO

Olfactory receptors (ORs) form the most important chemosensory receptor family responsible for our sense of smell in the nasal olfactory epithelium. This receptor family belongs to the class A G protein-coupled receptors (GPCRs). Recent research has indicated that ORs are involved in many nonolfactory physiological processes in extranasal tissue, such as the brain, pancreas, and testes, and implies the possible role of their dysregulation in various diseases. The recently released structures of OR51E2 and consensus OR52 have also unveiled the uniqueness of ORs from other class A GPCR members. In this review, we discuss these recent developments and computational modeling efforts toward understanding the structural properties of unresolved ORs, which could guide potential future OR-targeted drug discovery.


Assuntos
Receptores Odorantes , Humanos , Receptores Odorantes/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Olfato , Descoberta de Drogas , Encéfalo/metabolismo , Proteínas de Neoplasias
5.
Mol Neurobiol ; 61(4): 1990-2005, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37837492

RESUMO

Inflammation and immunity play important roles in the pathogenesis of ischemic stroke. This study aimed to explore key regulatory genes in acute ischemic stroke (AIS) and their underlying mechanisms to provide new research targets for the diagnosis and treatment of ischemic stroke. We searched for differentially expressed mRNAs and miRNAs in patients with AIS and healthy populations in GEO databases, constructed a miRNA-mRNA network, and screened key miRNAs using least absolute shrinkage and selection operator regression and the support vector machine-recursive feature elimination model. Correlations between key miRNAs and infiltrating immune cells and inflammatory factors were analyzed using CIBERSORT and immunoassays and verified using clinical experiments. Bioinformatics analysis identified hsa-miR-877-5p as a key regulatory miRNA in AIS that can modulate immune and inflammatory responses. In clinical studies, it was verified by quantitative PCR analysis that the expression of hsa-miR-877-5p in the blood of AIS patients was higher than that of the healthy group. Then, enzyme-linked immunosorbent assay revealed that the expression of IL-23 and TNF-α related to inflammation in AIS patients was higher than that of the healthy. Quantitative PCR further found that the relative mRNA expression of IL-23, CXCR3, and TNF-α in AIS group was higher than that of the healthy group. This study may provide a basis for a more comprehensive understanding of the potential mechanism of the occurrence and development of AIS, and hsa-miR-877-5p and its downstream effectors IL-23, CXCR3, and TNF-α may be potential intervention targets in AIS.


Assuntos
AVC Isquêmico , MicroRNAs , Humanos , Fator de Necrose Tumoral alfa , MicroRNAs/genética , Inflamação , Biologia Computacional , RNA Mensageiro , Interleucina-23
6.
J Tradit Complement Med ; 13(5): 417-429, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693094

RESUMO

Background: The Ze-Qi decoction (ZQD) is a traditional Chinese herbal formula commonly applied to treat lung cancer in China. This study aimed to assess the effective ingredients and molecular mechanisms of ZQD in treating non-small cell lung cancer (NSCLC) based on network pharmacology combined with experimental validation. Methods: Network pharmacology, bioinformatics, and molecular docking analyses were conducted to explore the mechanism of ZQD for treating NSCLC, which was further confirmed by animal experiments. Results: In total, 117 bioactive ingredients and 499 target proteins of ZQD were identified. Network pharmacology revealed 7 core active ingredients and 74 core target proteins. Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that the PI3K/Akt and p53 signaling pathways may be crucial in NSCLC treatment. Molecular docking analysis revealed that the seven crucial bioactive ingredients complexed with PI3K, Akt, and p53. The animal experiment results validated that ZQD treatment promoted cell apoptosis and cell cycle arrest, thereby inhibiting NSCLC growth and metastasis. Furthermore, ZQD treatment caused a significant increase in p53 and Bax, while leading to a distinct reduction in p-PI3K (Tyr317), p-Akt (Ser473), VEGFA, CD31, MMP2, MMP9, Bcl2, and CDK2. Conclusions: ZQD inhibited the growth and metastasis of NSCLC subcutaneous tumors in C57BL/6J mice via the PI3K/Akt/p53 signaling pathway.

7.
J Agric Food Chem ; 71(18): 6894-6907, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37125728

RESUMO

Due to the large amount of antibiotics used for human therapy, agriculture, and even aquaculture, the emergence of multidrug-resistant Streptococcus suis (S. suis) led to serious public health threats. Antibiotic-assisted strategies have emerged as a promising approach to alleviate this crisis. Here, the polyphenolic compound gallic acid was found to enhance sulfonamides against multidrug-resistant S. suis. Mechanistic analysis revealed that gallic acid effectively disrupts the integrity and function of the cytoplasmic membrane by dissipating the proton motive force of bacteria. Moreover, we found that gallic acid regulates the expression of dihydrofolate reductase, which in turn inhibits tetrahydrofolate synthesis. As a result of polypharmacology, gallic acid can fully restore sulfadiazine sodium activity in the animal infection model without any drug resistances. Our findings provide an insightful view into the threats of antibiotic resistance. It could become a promising strategy to resolve this crisis.


Assuntos
Streptococcus suis , Animais , Humanos , Streptococcus suis/genética , Streptococcus suis/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/metabolismo , Sulfanilamida/metabolismo , Sulfanilamida/farmacologia , Membrana Celular
8.
CNS Neurosci Ther ; 29(7): 1785-1804, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36880283

RESUMO

BACKGROUND: Stem cells offer a promising therapeutic strategy for patients with disorders of consciousness (DOC) after severe traumatic brain injury (TBI), but the optimal transplantation sites and cells are not clear. Although the paraventricular thalamus (PVT) and claustrum (CLA) are associated with consciousness and are candidate transplantation targets, few studies have been designed to investigate this possibility. METHODS: Controlled cortical injury (CCI) was performed to establish a mouse model of DOC. CCI-DOC paradigm was established to investigate the role of excitatory neurons of PVT and CLA in disorders of consciousness. The role of excitatory neuron transplantation in promoting arousal and recovery of consciousness was determined by optogenetics, chemogenetics, electrophysiology, Western blot, RT-PCR, double immunofluorescence labeling, and neurobehavioral experiments. RESULTS: After CCI-DOC, neuronal apoptosis was found to be concentrated in the PVT and CLA. Prolonged awaking latency and cognitive decline were also seen after destruction of the PVT and CLA, suggesting that the PVT and CLA may be key nuclei in DOC. Awaking latency and cognitive performance could be altered by inhibiting or activating excitatory neurons, implying that excitatory neurons may play an important role in DOC. Furthermore, we found that the PVT and CLA function differently, with the PVT mainly involved in arousal maintenance while the CLA plays a role mainly in the generation of conscious content. Finally, we found that by transplanting excitatory neuron precursor cells in the PVT and CLA, respectively, we could facilitate awakening with recovery of consciousness, which was mainly manifested by shortened awaking latency, reduced duration of loss of consciousness (LOC), enhanced cognitive ability, enhanced memory, and improved limb sensation. CONCLUSION: In this study, we found that the deterioration in the level and content of consciousness after TBI was associated with a large reduction in glutamatergic neurons within the PVT and CLA. Transplantation of glutamatergic neuronal precursor cells could play a beneficial role in promoting arousal and recovery of consciousness. Thus, these findings have the potential to provide a favorable basis for promoting awakening and recovery in patients with DOC.


Assuntos
Lesões Encefálicas Traumáticas , Claustrum , Camundongos , Animais , Estado de Consciência , Transtornos da Consciência , Tálamo , Neurônios/fisiologia
10.
J Cancer ; 14(3): 336-349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860928

RESUMO

This study aimed to elucidate the effects of Qingrehuoxue Formula (QRHXF) on NSCLC and its underlying mechanisms. Nude mouse model of subcutaneous tumors was established. QRHXF and erastin were administered orally and intraperitoneally, respectively. Mice's body weight and subcutaneous tumor volumes were measured. The effects of QRHXF on epithelial-mesenchymal transition (EMT), tumor-associated angiogenesis and matrix metalloproteinases (MMPs) were assessed. Importantly, we also analysed the anti-NSCLC of QRHXF form the aspect of ferroptosis and apoptosis and investigate its underlying mechanisms. The safety of QRHXF in mice was also evaluated. QRHXF slowed down the speed of tumor growth and visibly inhibited tumor growth. The expression levels of CD31, VEGFA, MMP2 and MMP9 were prominently suppressed by QRHXF. Furthermore, QRHXF appeared to remarkably inhibite cell proliferation and EMT by decreasing Ki67, N-cadherin and vimentin expression but elevating E-cadherin expression. There were more apoptotic cells in QRHXF group's tumor tissues, and QRHXF treatment increased BAX and cleaved-caspased 3 levels but decreased Bcl-2 levels. QRHXF significantly increased the accumulation of ROS, Fe2+, H2O2, and MDA while reduced GSH levels. SLC7A11 and GPX4 protein levels were considerably suppressed by QRHXF treatment. Moreover, QRHXF triggered ultrastructural changes in the mitochondria of tumor cells. The levels of p53 and p-GSK-3ß were upregulated, whereas that of Nrf2 was downregulated in the groups treated with QRHXF. QRHXF displayed no toxicity in mice. QRHXF activated ferroptosis and apoptosis to suppress NSCLC cell progression via p53 and GSK-3ß/Nrf2 signaling pathways.

11.
RSC Adv ; 13(7): 4422-4430, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36760312

RESUMO

Sleep disorders in adults are related to adverse health effects such as reduced quality of life and increased mortality. About 30-40% of adults are suffering from different sleep disorders. The human melatonin receptors (MT1 and MT2) are family A G protein-coupled receptors that respond to the neurohormone melatonin MEL which regulates circadian rhythm and sleep. Many efforts have been made to develop drugs targeting melatonin receptors to treat insomnia, circadian rhythm disorders, and even cancer. However, designing subtype-selective melatonergic drugs remains challenging due to their high similarities in both sequences and structures. MEL (a function-selective compound with a bulky ß-naphthyl group) behaves as an MT2-selective antagonist, whereas it is an agonist of MT1. Here, molecular dynamics simulations were used to investigate the ligand selectivity of MT receptors at the atomic level. We found that the binding conformation of MEL differs in different melatonin receptors. In MT1, the naphthalene ring of MEL forms a structure perpendicular to the membrane surface. In contrast, there is a 130° angle between the naphthalene ring of MEL and the membrane surface in MT2. Because of this conformational difference, the MEL leads to a constant water channel in MT1 which activates the receptor. However, MEL hinders the formation of continuous water channels, resulting in an inactive state of MT2. Furthermore, we found that A1173.29 in MT2 is a crucial amino acid capable of hindering the conformational flip of the MEL molecule. These results, coupled with previous functional data, reveal that although MT1 and MT2 share highly similar orthosteric ligand-binding pockets, they also display distinctive features that could be used to design selective compounds. Our findings provide new insights into functionally selective melatonergic drug development for sleep disorders.

12.
Immunotherapy ; 15(4): 235-252, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36695131

RESUMO

Aim: We aimed to examine the effect of FHL1 in the diagnosis and prognosis of non-small-cell lung cancer and its relationship with tumor-infiltrating immune cells. Methods: FHL1 expression status and influence on clinical characteristics, diagnosis and prognosis in non-small-cell lung cancer were assessed. Interaction networks of FHL1 were revealed, and a correlation analysis between FHL1 expression and tumor immunity was performed. Results: FHL1 expression was significantly lower in tumors, and downregulated FHL1 predicted a worse prognosis for lung adenocarcinoma. FHL1 expression was correlated with tumor-infiltrating immune cells, immune checkpoints and chemokine levels. Conclusion: FHL1 is a powerful biomarker to evaluate the diagnosis and prognosis and immune infiltration level of lung adenocarcinoma.


The advent of immunotherapy has considerably changed non-small-cell lung cancer (NSCLC) treatment, allowing a subset of patients to live longer and have a better prognosis. However, not all patients benefit from immunotherapy. Therefore it is urgently necessary to develop universal and effective biomarkers of NSCLC for diagnosis and prognostic evaluation to effectively diagnose the disease and increase the utility of immunotherapy. In this study, a protein called FHL1 was identified as a potential predictive biomarker according to NSCLC databases, and we further investigated the underlying relationship between FHL1 and immunotherapy. In conclusion, FHL1 is a promising biomarker for the diagnosis, prognosis and immune infiltration level of lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Prognóstico , Neoplasias Pulmonares/diagnóstico , Adenocarcinoma de Pulmão/diagnóstico , Biomarcadores Tumorais , Proteínas Musculares , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM
13.
FEBS Open Bio ; 13(1): 72-88, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36282125

RESUMO

Lung cancer is the leading cause of cancer-related mortality in men and women globally. Non-small cell lung cancer (NSCLC) is the most prevalent subtype, accounting for 85-90% of all cancers. Although there have been dramatic advances in therapeutic approaches in recent decades, the recurrence and metastasis rates of NSCLC are as high as 30-40% with the 5-year overall survival rate being less than 15%. Therefore, it is necessary to explore the pathogenesis of NSCLC at the genetic level and identify prognostic biomarkers and novel therapeutic targets. Here, we aimed to identify mutated genes with high frequencies in Chinese NSCLC patients using next-generation sequencing and to investigate their relationships with the tumor mutation burden (TMB) and tumor immune microenvironment. A total of 110 NSCLC patients were enrolled to profile the genetic variations. Mutations in EGFR (62.37%), TP53 (61.29%), LRP1B (13.98%), FAT1 (12.90%), KMT2D (11.83%), CREBBP (10.75%), and RB1 (9.68%) were most prevalent. TP53, LRP1B, KMT2D, and CREBBP mutations were all significantly associated with high TMB (P < 0.05 or P < 0.01). The infiltrating levels of immune cells and immune molecules were enriched significantly in the LRP1B mutation group. LRP1B mutations significantly correlated with stimulating and inhibitory immunoregulators. Gene set enrichment analysis revealed that cell cycle, the Notch signaling pathway, the insulin signaling pathway, and the mTOR signaling pathway are related to LRP1B mutations in the immune system. LRP1B mutations may be of clinical importance in enhancing the anti-tumor immune response and may be a promising biomarker for predicting immunotherapy responsiveness.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Masculino , Humanos , Feminino , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Prognóstico , Biomarcadores Tumorais/genética , Transdução de Sinais , Microambiente Tumoral/genética
14.
Front Cell Neurosci ; 16: 981190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187288

RESUMO

Trigeminal neuralgia (TN) is a peripheral nerve disorder often accompanied by abnormalities in mood. The lateral habenula (LHb) plays important roles in the modulation of pain and emotion. In the present study, we investigated the involvement of the LHb in the mechanisms underlying allodynia and anxiety induced by partial transection of the infraorbital nerve (pT-ION) in mice. Our results indicated that pT-ION induced persistent orofacial allodynia and anxiety-like behaviors, which were correlated with increased phosphorylation of N-Methyl D-aspartate receptor (NMDAR) subtype 2B (p-NR2B) and Ca2+/calmodulin-dependent protein kinase II (p-CaMKII) in LHb neurons. Bilateral inhibition of NMDARs and CaMKII in the LHb attenuated the allodynia and anxiety-like behavior induced by pT-ION. Furthermore, bilateral activation of NMDARs in the LHb increased the expression of p-NR2B and p-CaMKII and induced orofacial allodynia and anxiety-like behaviors in naive mice. Adeno-associated virus (AAV)-mediated expression of hM3D(Gq) in CaMKII+ neurons of the bilateral LHb, followed by clozapine-N-oxide (CNO) administration, also triggered orofacial allodynia and anxiety-like behaviors in naïve mice with successful virus infection in LHb neurons (verified based on immunofluorescence). In conclusion, these findings suggest that activation of NMDA/CaMKII signaling in the LHb contributes to the occurrence and development of TN and related anxiety-like behaviors. Therefore, suppressing the activity of CaMKII+ neurons in the bilateral LHb by targeting NMDA/CaMKII may represent a novel strategy for treating pain and anxiety associated with TN.

15.
Biomater Sci ; 10(13): 3624-3636, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35647941

RESUMO

Pancreatic cancer is one of the leading causes of cancer-related deaths worldwide. Gemcitabine (Gem) has been a key chemotherapy agent for pancreatic cancer treatment by suppressing cell proliferation and inducing apoptosis. However, the overexpression of inhibitors of apoptosis (IAP) family of proteins during the carcinogenesis of pancreatic cancer can develop resistance to chemotherapy treatment and result in poor efficacy. To achieve the synergistic combinations of multiple strategies for this dismal disease, we developed a robust nanomedicine system, consisting of a photodynamic therapeutic agent (chlorine e6, Ce6) and a pro-apoptotic peptide-Gem conjugate. To have spatiotemporally controlled drug release, the pro-apoptotic peptide-Gem conjugate was designed to have a vinyldithioether linker that was sensitive to reactive oxygen species (ROS). The nanomedicine was fabricated by the direct self-assembly of the pro-apoptotic peptide-Gem conjugate with Ce6. After being delivered into tumors, the nanomedicine disassembled and rapidly released Gem, Ce6, and the pro-apoptotic peptide upon light illumination (660 nm). Both in vitro and in vivo studies in pancreatic cancer models confirmed the tumor inhibition efficacy with low systemic toxicity to animals.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Nanomedicina , Neoplasias Pancreáticas/metabolismo , Peptídeos/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Pancreáticas
16.
Front Pharmacol ; 12: 663776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981241

RESUMO

Icariside II, an active flavonoid, is extracted from the traditional Chinese medicinal herb Epimedii. It possesses multiple biological and pharmacological properties, including anti-inflammatory, anticancer, and anti-osteoporotic properties. In recent years, apoptosis has become the hot spot in anticancer therapies. Icariside II exerts positive effects on inducing apoptosis and inhibiting proliferation in various cancers. The antitumorigenic activity of Icariside II was also proven through cell cycle arrest, triggering autophagy, reducing cellular metabolism, and inhibiting cancer metastasis and tumor-associated angiogenesis. Additionally, Icariside II, as a natural product, contributed to a synergistic effect alongside chemotherapeutic drugs. Due to its poor aqueous solubility and permeability, more strategies were developed to improve its therapeutic effects. This review aimed to summarize the chemopreventive properties of Icariside II in solid tumors and reveal its underlying molecular mechanisms.

17.
Front Pharmacol ; 11: 733, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508653

RESUMO

New drug discovery has been acknowledged as a complicated, expensive, time-consuming, and challenging project. It has been estimated that around 12 years and 2.7 billion USD, on average, are demanded for a new drug discovery via traditional drug development pipeline. How to reduce the research cost and speed up the development process of new drug discovery has become a challenging, urgent question for the pharmaceutical industry. Computer-aided drug discovery (CADD) has emerged as a powerful, and promising technology for faster, cheaper, and more effective drug design. Recently, the rapid growth of computational tools for drug discovery, including anticancer therapies, has exhibited a significant and outstanding impact on anticancer drug design, and has also provided fruitful insights into the area of cancer therapy. In this work, we discussed the different subareas of the computer-aided drug discovery process with a focus on anticancer drugs.

18.
Acta Neuropathol Commun ; 8(1): 44, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264959

RESUMO

Trigeminal neuralgia (TN) is debilitating and is usually accompanied by mood disorders. The lateral habenula (LHb) is considered to be involved in the modulation of pain and mood disorders, and the present study aimed to determine if and how the LHb participates in the development of pain and anxiety in TN. To address this issue, a mouse model of partial transection of the infraorbital nerve (pT-ION) was established. pT-ION induced stable and long-lasting primary and secondary orofacial allodynia and anxiety-like behaviors that correlated with the increased excitability of LHb neurons. Adeno-associated virus (AAV)-mediated expression of hM4D(Gi) in glutamatergic neurons of the unilateral LHb followed by clozapine-N-oxide application relieved pT-ION-induced anxiety-like behaviors but not allodynia. Immunofluorescence validated the successful infection of AAV in the LHb, and microarray analysis showed changes in gene expression in the LHb of mice showing allodynia and anxiety-like behaviors after pT-ION. Among these differentially expressed genes was Tacr3, the downregulation of which was validated by RT-qPCR. Rescuing the downregulation of Tacr3 by AAV-mediated Tacr3 overexpression in the unilateral LHb significantly reversed pT-ION-induced anxiety-like behaviors but not allodynia. Whole-cell patch clamp recording showed that Tacr3 overexpression suppressed nerve injury-induced hyperexcitation of LHb neurons, and western blotting showed that the pT-ION-induced upregulation of p-CaMKII was reversed by AAV-mediated Tacr3 overexpression or chemicogenetic inhibition of glutamatergic neurons in the LHb. Moreover, not only anxiety-like behaviors, but also allodynia after pT-ION were significantly alleviated by chemicogenetic inhibition of bilateral LHb neurons or by bilateral Tacr3 overexpression in the LHb. In conclusion, Tacr3 in the LHb plays a protective role in treating trigeminal nerve injury-induced allodynia and anxiety-like behaviors by suppressing the hyperexcitability of LHb neurons. These findings provide a rationale for suppressing unilateral or bilateral LHb activity by targeting Tacr3 in treating the anxiety and pain associated with TN.


Assuntos
Ansiedade/genética , Comportamento Animal/fisiologia , Habenula/metabolismo , Hiperalgesia/genética , Neurônios/metabolismo , Receptores da Neurocinina-3/genética , Neuralgia do Trigêmeo/genética , Animais , Antipsicóticos/farmacologia , Ansiedade/fisiopatologia , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Clozapina/análogos & derivados , Clozapina/farmacologia , Modelos Animais de Doenças , Teste de Labirinto em Cruz Elevado , Ácido Glutâmico/metabolismo , Habenula/citologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Hiperalgesia/psicologia , Nervo Maxilar/cirurgia , Camundongos , Inibição Neural , Teste de Campo Aberto , Transcriptoma , Neuralgia do Trigêmeo/metabolismo , Neuralgia do Trigêmeo/fisiopatologia , Neuralgia do Trigêmeo/psicologia
19.
Anesthesiology ; 131(5): 1125-1147, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31567367

RESUMO

BACKGROUND: Cancer pain is a pervasive clinical symptom impairing life quality. Vascular endothelial growth factor A has been well studied in tumor angiogenesis and is recognized as a therapeutic target for anti-cancer treatment. This study tested the hypothesis that vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 contribute to bone cancer pain regulation associated with spinal central sensitization. METHODS: This study was performed on female rats using a metastatic breast cancer bone pain model. Nociceptive behaviors were evaluated by mechanical allodynia, thermal hyperalgesia, spontaneous pain, and CatWalk gait analysis. Expression levels were measured by real-time quantitative polymerase chain reaction, western blot, and immunofluorescence analysis. Excitatory synaptic transmission was detected by whole-cell patch-clamp recordings. The primary outcome was the effect of pharmacologic intervention of spinal vascular endothelial growth factor A/vascular endothelial growth factor receptor 2-signaling on bone cancer pain behaviors. RESULTS: The mRNA and protein expression of vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 were upregulated in tumor-bearing rats. Spinal blocking vascular endothelial growth factor A or vascular endothelial growth factor receptor 2 significantly attenuated tumor-induced mechanical allodynia (mean ± SD: vascular endothelial growth factor A, 7.6 ± 2.6 g vs. 5.3 ± 3.3 g; vascular endothelial growth factor receptor 2, 7.8 ± 3.0 g vs. 5.2 ± 3.4 g; n = 6; P < 0.0001) and thermal hyperalgesia (mean ± SD: vascular endothelial growth factor A, 9.0 ± 2.4 s vs. 7.4 ± 2.7 s; vascular endothelial growth factor receptor 2, 9.3 ± 2.5 s vs. 7.5 ± 3.1 s; n = 6; P < 0.0001), as well as spontaneous pain and abnormal gaits. Exogenous vascular endothelial growth factor A enhanced excitatory synaptic transmission in a vascular endothelial growth factor receptor 2-dependent manner, and spinal injection of exogenous vascular endothelial growth factor A was sufficient to cause pain hypersensitivity via vascular endothelial growth factor receptor 2-mediated activation of protein kinase C and Src family kinase in naïve rats. Moreover, spinal blocking vascular endothelial growth factor A/vascular endothelial growth factor receptor 2 pathways suppressed protein kinase C-mediated N-methyl-D-aspartate receptor activation and Src family kinase-mediated proinflammatory cytokine production. CONCLUSIONS: Vascular endothelial growth factor A/vascular endothelial growth factor receptor 2 contributes to central sensitization and bone cancer pain via activation of neuronal protein kinase C and microglial Src family kinase pathways in the spinal cord.


Assuntos
Neoplasias Ósseas/metabolismo , Dor do Câncer/metabolismo , Medição da Dor/métodos , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Neoplasias Ósseas/patologia , Dor do Câncer/patologia , Feminino , Injeções Espinhais , Medição da Dor/efeitos dos fármacos , Quinazolinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese
20.
J Exp Clin Cancer Res ; 37(1): 207, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157903

RESUMO

BACKGROUND: Accumulating evidence suggests that M2-polarized tumor-associated macrophages (TAMs) play an important role in cancer progression and metastasis, making M2 polarization of TAMs an ever more appealing target for therapeutic intervention. Astragaloside IV (AS-IV), a saponin component isolated from Astragali radix, has been reported to inhibit the invasion and metastasis of lung cancer, but its effects on TAMs during lung cancer progression have not been investigated. METHODS: Human THP-1 monocytes were induced to differentiate into M2 macrophages through treatments with IL-4, IL-13, and phorbol myristate acetate (PMA). We used the lung cancer cell lines A549 and H1299 cultured in conditioned medium from M2 macrophages (M2-CM) to investigate the effects of AS-IV on tumor growth, invasion, migration, and angiogenesis of lung cancer cells. Macrophage subset distribution, M1 and M2 macrophage-associated markers, and mRNA expression were analyzed by flow cytometry and quantitative PCR. The activation of adenosine monophosphate-activated protein kinase (AMPK) signaling pathways that mediate M2-CM-promoted tumor migration was detected using western blotting. RESULTS: Here we found that AS-IV significantly inhibited IL-13 and IL-4-induced M2 polarization of macrophages, as illustrated by reduced expression of CD206 and M2-associated genes, and that AS-IV suppressed the M2-CM-induced invasion, migration, and angiogenesis of A549 and H1299 cells. In vivo experiments demonstrated that AS-IV greatly inhibited tumor growth and reduced the number of metastases of Lewis lung cancer. The percentage of M2 macrophages was decreased in tumor tissue after AS-IV treatment. Furthermore, AS-IV inhibited AMPKα activation in M2 macrophages, and silencing of AMPKα partially abrogated the inhibitory effect of AS-IV. CONCLUSIONS: AS-IV reduced the growth, invasion, migration, and angiogenesis of lung cancer by blocking the M2 polarization of macrophages partially through the AMPK signaling pathway, which appears to play an important role in AS-IV's ability to inhibit the metastasis of lung cancer.


Assuntos
Polaridade Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Quinases/genética , Saponinas/administração & dosagem , Triterpenos/administração & dosagem , Células A549 , Quinases Proteína-Quinases Ativadas por AMP , Polaridade Celular/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-13/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Metástase Neoplásica , Transdução de Sinais/efeitos dos fármacos , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA