Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37185088

RESUMO

A strictly anaerobic, organohalide-respiring bacterium, designated strain GPT, was characterized using a polyphasic approach. GPT is Gram-stain-negative, non-spore-forming and non-motile. Cells are irregular cocci ranging between 0.6 and 0.9 µm in diameter. GPT couples growth with the reductive dechlorination of 1,2-dichloroethane, vinyl chloride and all polychlorinated ethenes, except tetrachloroethene, yielding ethene and inorganic chloride as dechlorination end products. H2 and formate serve as electron donors for organohalide respiration in the presence of acetate as carbon source. Major cellular fatty acids include C16 : 0, C18 : 1ω9c, C16 : 1, C14 : 0 and C18 : 0. On the basis of 16S rRNA gene phylogeny, GPT is most closely related to Dehalogenimonas formicexedens NSZ-14T and Dehalogenimonas alkenigignens IP3-3T with 99.8 and 97.4 % sequence identities, respectively. Genome-wide pairwise comparisons based on average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization do not support the inclusion of GPT in previously described species of the genus Dehalogenimonas with validly published names. On the basis of phylogenetic, physiological and phenotypic traits, GPT represents a novel species within the genus Dehalogenimonas, for which the name Dehalogenimonas etheniformans sp. nov. is proposed. The type strain is GPT (= JCM 39172T = CGMCC 1.17861T).


Assuntos
Ácidos Graxos , Vitis , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Bactérias Anaeróbias/genética , Oxirredução , Formiatos , Fosfolipídeos/química
2.
Sheng Wu Gong Cheng Xue Bao ; 37(10): 3565-3577, 2021 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-34708611

RESUMO

The genus Dehalogenimonas (Dhgm) is a recently discovered taxonomic group within the class Dehalococcoidia of the phylum Chloroflexi. To date, Dhgm consists of three formally described species including Dehalogenimonas lykanthroporepellens, Dehalogenimonas alkenigignens and Dehalogenimonas formicexedens. All isolates of these three Dhgm species are obligate organohalide-respiring bacteria. They use hydrogen and formate as electron donors and chlorinated ethanes (e.g., 1,2,3-trichloropropane, 1,2-dichloropropane, 1,2-dichloroethane) as electron acceptors in energy-conserving reductive dechlorination reaction. Chlorinated ethanes are common groundwater contaminants in China. The unique metabolic capacities of Dhgm strains implicate it may play important roles in site remediation. The recently reported Dhgm sp. strain WBC-2 and 'Candidatus Dehalogenimonas etheniformans' strain GP are capable of dechlorinating certain chlorinated ethenes. More importantly, strain GP can completely detoxify the carcinogenic vinyl chloride (VC) to ethene. These findings expand the diversity of microorganisms involved in the respiratory VC reductive dechlorination and improve the understanding of Dhgm's ecological functions. Here, we summarize the advances in physiological and biochemical characteristics, ecological functions and genomic features of Dhgm, with the aim to develop effective and sustainable strategies to facilitate the bioremediation of chlorinated compounds contaminated sites.


Assuntos
Poluentes Químicos da Água , Anaerobiose , Biodegradação Ambiental , Chloroflexi
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA