Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; : 173416, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38795989

RESUMO

Due to the significant POPs characteristics, dioxins caused concern in public health and environmental protection. Evaluating the toxicity risk of dioxin degradation pathways is critical. OCDD, 1,2,3,4,6,7,8-HpCDD, and 1,2,3,4,6,7,8-HpCDF, which are highly abundant in the environment and have strong biodegradation capabilities, were selected as precursor molecules in this study. Firstly, their transformation pathways were deduced during the metabolism of biometabolism, microbial aerobic, microbial anaerobic, and photodegradation pathways, and density function theory (DFT) was used to calculate the Gibbs free energy to infer the possibility of the occurrence of the transformation pathway. Secondly, the carcinogenic potential of the precursors and their degradation products was evaluated using the TOPKAT modeling method. With the help of the positive indicator (0-1) normalization method and heat map analysis, a significant increase in the toxic effect of some of the transformation products was found, and it was inferred that it was related to the structure of the transformation products. Meanwhile, the strength of the endocrine disrupting effect of dioxin transformation products was quantitatively assessed using molecular docking and subjective assignment methods, and it was found that dioxin transformation products with a higher content of chlorine atoms and molecules similar to those of thyroid hormones exhibited a higher risk of endocrine disruption. Finally, the environmental health risks caused by each degradation pathway were comprehensively assessed with the help of the negative indicator (1-2) standardization method, which provides a theoretical basis for avoiding the toxicity risks caused by dioxin degradation transformation. In addition, the 3D-QSAR model was used to verify the necessity and rationality of this study. This paper provides theoretical support and reference significance for the toxicity assessment of dioxin degradation by-products from inferred degradation pathways.

2.
Nat Commun ; 15(1): 2604, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521789

RESUMO

The complex biological mechanisms underlying human brain aging remain incompletely understood. This study investigated the genetic architecture of three brain age gaps (BAG) derived from gray matter volume (GM-BAG), white matter microstructure (WM-BAG), and functional connectivity (FC-BAG). We identified sixteen genomic loci that reached genome-wide significance (P-value < 5×10-8). A gene-drug-disease network highlighted genes linked to GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes for cancer therapy. GM-BAG displayed the most pronounced heritability enrichment in genetic variants within conserved regions. Oligodendrocytes and astrocytes, but not neurons, exhibited notable heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified potential causal effects of several chronic diseases on brain aging, such as type 2 diabetes on GM-BAG and AD on WM-BAG. Our results provide insights into the genetics of human brain aging, with clinical implications for potential lifestyle and therapeutic interventions. All results are publicly available at https://labs.loni.usc.edu/medicine .


Assuntos
Diabetes Mellitus Tipo 2 , Substância Branca , Humanos , Encéfalo , Substância Cinzenta , Imageamento por Ressonância Magnética/métodos , Substância Branca/fisiologia , Análise da Randomização Mendeliana
3.
Proc Natl Acad Sci U S A ; 120(52): e2300842120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127979

RESUMO

Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Mapeamento Encefálico/métodos , Genômica , Neoplasias Encefálicas/patologia
4.
Am J Transl Res ; 15(8): 5536-5542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692933

RESUMO

OBJECTIVE: To observe the predictive value of 25-hydroxyvitamin D3 (25(OH)D3), C-reactive protein (CRP), and tumor necrosis factor-α (TNF-α) levels for osteoporosis in elderly men. METHODS: A retrospective analysis was conducted in 122 elderly male patients that were tested in The Affiliated Hospital of Xinyang Vocational and Technical College between January 2020 and May 2022. The patients were divided into an osteoporosis group (OG, n = 77) and a control group (CG, n = 45) according to the results of bone mineral density. The formula N = Z^2*(P*(1-P))/E^2 was used to calculate the required sample size (N) for a given confidence interval (Z), total error (E), and proportion (P) of the target population. The proportion (P) is often assumed to be 0.5 and not randomly distributed across the population. The levels of cross-linked C-terminal telopeptide of type I collagen (CTX-I), procollagen type I N-terminal propeptide (PINP), intact parathyroid hormone (iPTH), osteocalcin (OC), and serum levels of 25(OH)D3, CRP, and TNF-α were measured and compared between the two groups. Pearson correlation was used to analyze the relationship between the parameters. The predictive value of 25(OH)D3, CRP and TNF-α for osteoporosis was also analyzed using receiver operating characteristic (ROC) curves. Logistic multivariate analysis was performed to analyze the risk factors for osteoporosis in elderly men. RESULTS: Compared with the CG, the OG exhibited evidently lower serum 25(OH)D3, but significantly higher CRP and TNF-α (P < 0.05). Pearson correlation demonstrated that the bone mineral density was negatively correlated with CTX-I, PINP, serum CRP and TNF-α, whereas it was positively correlated with OC and 25(OH)D3 in elderly men. The areas under the ROC curve (AUCs) of serum 25(OH)D3, CRP and TNF-α were identified as 0.931, 0.878 and 0.846, respectively, and the AUC of the combined detection of the three was 0.991. Furthermore, age, CTX-I, PINP, OC, 25(OH)D3, as well as serum CRP and TNF-α were identified as risk factors for osteoporosis among elderly men. CONCLUSION: Serum 25(OH)D3, CRP, and TNF-α are associated with osteoporosis in elderly men, and can serve as predictors for osteoporosis.

5.
bioRxiv ; 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37333190

RESUMO

The complex biological mechanisms underlying human brain aging remain incompletely understood, involving multiple body organs and chronic diseases. In this study, we used multimodal magnetic resonance imaging and artificial intelligence to examine the genetic architecture of the brain age gap (BAG) derived from gray matter volume (GM-BAG, N=31,557 European ancestry), white matter microstructure (WM-BAG, N=31,674), and functional connectivity (FC-BAG, N=32,017). We identified sixteen genomic loci that reached genome-wide significance (P-value<5×10-8). A gene-drug-disease network highlighted genes linked to GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes for cancer therapy. GM-BAG showed the highest heritability enrichment for genetic variants in conserved regions, whereas WM-BAG exhibited the highest heritability enrichment in the 5' untranslated regions; oligodendrocytes and astrocytes, but not neurons, showed significant heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified potential causal effects of several exposure variables on brain aging, such as type 2 diabetes on GM-BAG (odds ratio=1.05 [1.01, 1.09], P-value=1.96×10-2) and AD on WM-BAG (odds ratio=1.04 [1.02, 1.05], P-value=7.18×10-5). Overall, our results provide valuable insights into the genetics of human brain aging, with clinical implications for potential lifestyle and therapeutic interventions. All results are publicly available at the MEDICINE knowledge portal: https://labs.loni.usc.edu/medicine.

6.
J Virol ; 97(2): e0197522, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36749073

RESUMO

Interferon-inducible protein 16 (IFI16) plays a critical role in antiviral innate immune responses against DNA viruses. Although the acetylation of IFI16 is crucial to its cytoplasmic translocation and downstream signal transduction, the regulation of IFI16 acetylation remains unclear. In this study, we demonstrated that the NAD-dependent deacetylase silent information regulatory 1 (Sirtuin1, Sirt1) interacted with IFI16 and decreased the acetylation of IFI16, resulting in the inhibition of IFI16 cytoplasmic localization and antiviral responses against DNA virus and viral DNA in human cells. Meantime, Sirt1 could not inhibit RNA virus-triggered signal transduction. Interestingly, even p204, the murine ortholog of human IFI16, barely interacted with Sirt1. Thus, Sirt1 could not negatively regulate the acetylation of p204 and subsequent signal transduction upon herpes simplex virus 1 (HSV-1) infection in mouse cells. Taken together, our research work showed a new mechanism by which Sirt1 manipulated IFI16-mediated host defense. Our study also demonstrated a difference in the regulation of antiviral host defense between humans and mice, which might be considered in preclinical studies for antiviral treatment. IMPORTANCE DNA viruses, such as hepatitis B virus (HBV), human papillomavirus (HPV), human cytomegalovirus (HCMV), Epstein-Barr virus (EBV), and herpes simplex virus (HSV), can cause a wide range of diseases and are considered a global threat to human health. Interferon-inducible protein 16 (IFI16) binds virus DNA and triggers antiviral innate immune responses to restrict viral infection. In this study, we identified that silent information regulatory 1 (Sirtuin1, Sirt1) interacted with IFI16 and regulated IFI16-mediated innate host defense. Therefore, the activator or inhibitor of Sirt1 may have the potential to be used as a novel strategy to treat DNA virus-associated diseases. We also found that Sirt1 barely interacted with p204, the murine ortholog of human IFI16, and could not negatively regulate innate immune responses upon HSV-1 infection in mouse cells. This difference between humans and mice in the regulation of antiviral host defense might be considered in preclinical studies for antiviral treatment.


Assuntos
Herpes Simples , Infecções por Herpesviridae , Proteínas Nucleares , Sirtuína 1 , Animais , Humanos , Camundongos , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4/metabolismo , Imunidade Inata , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Sirtuína 1/genética
7.
PLoS Pathog ; 16(3): e1008387, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32126128

RESUMO

Mediator of IRF3 activation (MITA, also named as STING/ERIS/MPYS/TMEM173), is essential to DNA virus- or cytosolic DNA-triggered innate immune responses. In this study, we demonstrated the negative regulatory role of RING-finger protein (RNF) 90 in innate immune responses targeting MITA. RNF90 promoted K48-linked ubiquitination of MITA and its proteasome-dependent degradation. Overexpression of RNF90 inhibited HSV-1- or cytosolic DNA-induced immune responses whereas RNF90 knockdown had the opposite effects. Moreover, RNF90-deficient bone marrow-derived dendritic cells (BMDCs), bone marrow-derived macrophages (BMMs) and mouse embryonic fibroblasts (MEFs) exhibited increased DNA virus- or cytosolic DNA-triggered signaling and RNF90 deficiency protected mice from DNA virus infection. Taken together, our findings suggested a novel function of RNF90 in innate immunity.


Assuntos
Herpesvirus Humano 1/imunologia , Imunidade Inata , Proteínas de Membrana/imunologia , Proteólise , Proteínas com Motivo Tripartido/imunologia , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/virologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Fibroblastos/imunologia , Fibroblastos/virologia , Herpesvirus Humano 1/genética , Macrófagos/imunologia , Macrófagos/virologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética
8.
FEBS Lett ; 592(10): 1693-1704, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29710427

RESUMO

Interferon (IFN)-inducible protein 16 (IFI16) regulates human immunodeficiency virus replication by inducing innate immune responses as a DNA sensor. Human T-lymphotropic virus type 1 (HTLV-1), a delta retrovirus family member, has been linked to multiple diseases. Here, we report that IFI16 expression is induced by HTLV-1 infection or HTLV-1 reverse transcription intermediate (RTI) ssDNA90 transfection. IFI16 overexpression decreases HTLV-1 protein expression, whereas IFI16 knockdown increases it. Furthermore, the knockdown of IFI16 is followed by impaired innate immune responses upon HTLV-1 infection. In addition, IFI16 forms a complex with ssDNA90 and enhances ssDNA90-triggered innate immune responses. Collectively, our data suggest a critical role for IFI16 during HTLV-1 infection by interacting with HTLV-1 RTI ssDNA90 and restricting HTLV-1 replication.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Imunidade Inata/fisiologia , Proteínas Nucleares/fisiologia , Fosfoproteínas/fisiologia , Replicação Viral/fisiologia , Linhagem Celular , DNA de Cadeia Simples/genética , DNA Viral/genética , Técnicas de Silenciamento de Genes , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA