Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37631312

RESUMO

Proteolysis-Targeting Chimeras (PROTACs) are a promising new technology in drug development. They have rapidly evolved in recent years, with several of them in clinical trials. While most of these advances have been associated with monovalent protein degraders, bivalent PROTACs have also entered clinical trials, although progression to market has been limited. One of the reasons is the complex physicochemical properties of the heterobifunctional PROTACs. A promising strategy to improve pharmacokinetics of highly lipophilic compounds, such as PROTACs, is encapsulation in liposome systems. Here we describe liposome systems for intravenous administration to enhance the PK properties of two bivalent PROTAC molecules, by reducing clearance and increasing systemic coverage. We developed and characterized a PROTAC-in-cyclodextrin liposome system where the drug was retained in the liposome core. In PK studies at 1 mg/kg for GNE-01 the PROTAC-in-cyclodextrin liposome, compared to the solution formulation, showed a 80- and a 380-fold enhancement in AUC for mouse and rat studies, respectively. We further investigated the same PROTAC-in-cyclodextrin liposome system with the second PROTAC (GNE-02), where we monitored both lipid and drug concentrations in vivo. Similarly, in a mouse PK study of GEN-02, the PROTAC-in-cyclodextrin liposome system exhibited enhancement in plasma concentration of a 23× increase over the conventional solution formulation. Importantly, the lipid CL correlated with the drug CL. Additionally, we investigated a conventional liposome approach for GNE-02, where the PROTAC resides in the lipid bilayer. Here, a 5× increase in AUC was observed, compared to the conventional solution formulation, and the drug CL was faster than the lipid CL. These results indicate that the different liposome systems can be tailored to translate across multiple PROTAC systems to modulate and improve plasma concentrations. Optimization of the liposomes could further improve tumor concentration and improve the overall therapeutic index (TI). This delivery technology may be well suited to bring novel protein targeted PROTACs into clinics.

2.
J Proteome Res ; 22(6): 2044-2054, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37195130

RESUMO

Protein glycosylation and phosphorylation are two of the most common post-translational modifications (PTMs), which play an important role in many biological processes. However, low abundance and poor ionization efficiency of phosphopeptides and glycopeptides make direct MS analysis challenging. In this study, we developed a hydrophilicity-enhanced bifunctional Ti-IMAC (IMAC: immobilized metal affinity chromatography) material with grafted adenosine triphosphate (denoted as epoxy-ATP-Ti4+) to enable simultaneous enrichment and separation of common N-glycopeptides, phosphopeptides, and M6P glycopeptides from tissue/cells. The enrichment was achieved through a dual-mode mechanism based on the electrostatic and hydrophilic properties of the material. The epoxy-ATP-Ti4+ IMAC material was prepared from epoxy-functionalized silica particles via a convenient two-step process. The ATP molecule provided strong and active phosphate sites for binding phosphopeptides in the conventional IMAC mode and also contributed significantly to the hydrophilicity, which permitted the enrichment of glycopeptides via hydrophilic interaction chromatography. The two modes could be implemented simultaneously, allowing glycopeptides and phosphopeptides to be collected sequentially in a single experiment from the same sample. In addition to standard protein samples, the material was further applied to glycopeptide and phosphopeptide enrichment and characterization from HeLa cell digests and mouse lung tissue samples. In total, 2928 glycopeptides and 3051 phosphopeptides were identified from the mouse lung tissue sample, supporting the utility of this material for large-scale PTM analysis of complex biological samples. Overall, the newly developed epoxy-ATP-Ti4+ IMAC material and associated fractionation method enable simple and effective enrichment and separation of glycopeptides and phosphopeptides, offering a useful tool to study potential crosstalk between these two important PTMs in biological systems. The MS data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029775.


Assuntos
Fosfopeptídeos , Titânio , Humanos , Animais , Camundongos , Células HeLa , Fosfopeptídeos/análise , Titânio/química , Glicopeptídeos/análise , Cromatografia de Afinidade/métodos
3.
Mol Omics ; 17(5): 652-664, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34318855

RESUMO

The pancreas is a vital organ with digestive and endocrine roles, and diseases of the pancreas affect millions of people yearly. A better understanding of the pancreas proteome and its dynamic post-translational modifications (PTMs) is necessary to engineer higher fidelity tissue analogues for use in transplantation. The extracellular matrix (ECM) has major roles in binding and signaling essential to the viability of insulin-producing islets of Langerhans. To characterize PTMs in the pancreas, native and decellularized tissues from four donors were analyzed. N-Glycosylated and phosphorylated peptides were simultaneously enriched via electrostatic repulsion-hydrophilic interaction chromatography and analyzed with mass spectrometry, maximizing PTM information from one workflow. A modified surfactant and chaotropic agent assisted sequential extraction/on-pellet digestion was used to maximize solubility of the ECM. The analysis resulted in the confident identification of 3650 proteins, including 517 N-glycoproteins and 148 phosphoproteins. We identified 214 ECM proteins, of which 99 were N-glycosylated, 18 were phosphorylated, and 9 were found to have both modifications. Collagens, a major component of the ECM, were the most highly glycosylated of the ECM proteins and several were also heavily phosphorylated, raising the possibility of structural and thus functional changes resulting from these modifications. To our knowledge, this work represents the first characterization of PTMs in pancreatic ECM proteins. This work provides a basal profile of PTMs in the healthy human pancreatic ECM, laying the foundation for future investigations to determine disease-specific changes such as in diabetes and pancreatic cancer, and potentially helping to guide the development of tissue replacement constructs. Data are available via ProteomeXchange with identifier PXD025048.


Assuntos
Proteínas da Matriz Extracelular , Proteômica , Cromatografia , Proteínas da Matriz Extracelular/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Pâncreas/metabolismo , Processamento de Proteína Pós-Traducional , Eletricidade Estática
4.
Sci Rep ; 11(1): 2013, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479349

RESUMO

Nε-lysine acetylation in the ER is an essential component of the quality control machinery. ER acetylation is ensured by a membrane transporter, AT-1/SLC33A1, which translocates cytosolic acetyl-CoA into the ER lumen, and two acetyltransferases, ATase1 and ATase2, which acetylate nascent polypeptides within the ER lumen. Dysfunctional AT-1, as caused by gene mutation or duplication events, results in severe disease phenotypes. Here, we used two models of AT-1 dysregulation to investigate dynamics of the secretory pathway: AT-1 sTg, a model of systemic AT-1 overexpression, and AT-1S113R/+, a model of AT-1 haploinsufficiency. The animals displayed reorganization of the ER, ERGIC, and Golgi apparatus. In particular, AT-1 sTg animals displayed a marked delay in Golgi-to-plasma membrane protein trafficking, significant alterations in Golgi-based N-glycan modification, and a marked expansion of the lysosomal network. Collectively our results indicate that AT-1 is essential to maintain proper organization and engagement of the secretory pathway.


Assuntos
Acetilcoenzima A/genética , Acetiltransferases/genética , Retículo Endoplasmático/genética , Proteínas de Membrana Transportadoras/genética , Acetilcoenzima A/metabolismo , Acetilação , Autofagia/genética , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/genética , Complexo de Golgi/genética , Complexo de Golgi/patologia , Haploinsuficiência/genética , Humanos , Lisossomos/genética , Mutação/genética , Processamento de Proteína Pós-Traducional/genética , Transporte Proteico/genética , Via Secretória/genética
5.
Anal Chem ; 91(18): 11589-11597, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31398006

RESUMO

Mannose-6-phosphate (M6P) glycosylation is an important post-translational modification (PTM) and plays a crucial role in transferring lysosomal hydrolases to lysosome, and is involved in several other biological processes. Aberrant M6P modifications have been implicated in lysosomal storage diseases and numerous other disorders including Alzheimer's disease and cancer. Research on profiling of intact M6P glycopeptides remains challenging due to its extremely low stoichiometry. Here we propose a dual-mode affinity approach to enrich M6P glycopeptides by dual-functional titanium(IV) immobilized metal affinity chromatography [Ti(IV)-IMAC] materials. In combination with state-of-the-art mass spectrometry and database search engine, we profiled 237 intact M6P glycopeptides corresponding to 81 M6P glycoproteins in five types of tissues in mouse, representing the first large-scale profiling of M6P glycosylation in mouse samples. The analysis of M6P glycoforms revealed the predominant glycan substrates of this PTM. Gene ontology analysis showed that overrepresented M6P glycoproteins were lysosomal-associated proteins. However, there were still substantial M6P glycoproteins that possessed different subcellular locations and molecular functions. Deep mining of their roles implicated in lysosomal and nonlysosomal function can provide new insights into functional roles of this important yet poorly studied modification.


Assuntos
Glicopeptídeos/análise , Glicoproteínas/análise , Manosefosfatos/química , Titânio/química , Sequência de Aminoácidos , Animais , Cromatografia de Afinidade/métodos , Ontologia Genética , Glicopeptídeos/química , Glicoproteínas/química , Glicosilação , Camundongos , Processamento de Proteína Pós-Traducional , Software , Espectrometria de Massas em Tandem
6.
Bioconjug Chem ; 26(12): 2571-8, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26580576

RESUMO

Cancer cell-targeted imaging and drug delivery remain a challenge for precise cancer theranostics. MUC1 is a large transmembrane glycoprotein that may potentially serve as a target for cancer theranostics. Herein, using a MUC1-targeting aptamer (APT) as the "warhead", we rationally designed and constructed a hybrid nanoparticle 1-NPs-QDs-hAPT (Vehicle) that could be applied for MUC1-targeted cell uptake and imaging. By intercalating different Vehicle amounts with the anticancer drug doxorubicin (DOX), we obtained the multifunctional bioconjugate Vehicle-DOX with a maximized drug payload and DOX fluorescence quenching capability. Confocal microscopy cell imaging indicated that Vehicle-DOX could be used to track MUC1-targeted drug release. A cytotoxicity study indicated that Vehicle-DOX could be applied for MUC1-targeted cytotoxicity. We anticipate that our multifunctional bioconjugate Vehicle-DOX could be applied for in vivo tumor-targeted theranostics.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Aptâmeros de Nucleotídeos/metabolismo , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Mucina-1/metabolismo , Nanopartículas/metabolismo , Antibióticos Antineoplásicos/farmacologia , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Doxorrubicina/farmacologia , Feminino , Humanos , Células MCF-7 , Nanopartículas/ultraestrutura , Imagem Óptica , Nanomedicina Teranóstica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA