Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 101: 154125, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35525236

RESUMO

BACKGROUND: Parkinson's disease (PD) is a multi-factorial neurodegenerative disease affecting motor function of patients. The hall markers of PD are dopaminergic neuron loss in the midbrain and the presence of intra-neuronal inclusion bodies mainly composed of aggregation-prone protein alpha-synuclein (α-syn). Ubiquitin-proteasome system (UPS) is a multi-step reaction process responsible for more than 80% intracellular protein degradation. Impairment of UPS function has been observed in the brain tissue of PD patients. PDE4 inhibitors have been shown to activate cAMP-PKA pathway and promote UPS activity in Alzheimer's disease model. α-mangostin is a natural xanthonoid with broad biological activities, such as antioxidant, antimicrobial and antitumour activities. Structure-based optimizations based on α-mangostin produced a potent PDE4 inhibitor, 4e. Herein, we studied whether 4e could promote proteasomal degradation of α-syn in Parkinson's disease models through PKA activation. METHODS: cAMP Assay was conducted to quantify cAMP levels in samples. Model UPS substrates (Ub-G76V-GFP and Ub-R-GFP) were used to monitor UPS-dependent activity. Proteasome activity was investigated by short peptide substrate, Suc-LLVY-AMC, cleavage of which by the proteasome increases fluorescence sensitivity. Tet-on WT, A30P, and A53T α-syn-inducible PC12 cells and primary mouse cortical neurons from A53T transgenic mice were used to evaluate the effect of 4e against α-syn in vitro. Heterozygous A53T transgenic mice were employed to assess the effect of 4e on the clearance of α-syn in vivo, and further validations were applied by western blotting and immunohistochemistry. RESULTS: Taken together, α-mangostin derivative 4e, a PDE4 inhibitor, efficiently activated the cAMP/PKA pathway in neuronal cells, and promoted UPS activity as evidenced by enhanced degradation of UPS substrate Ub-G76V-GFP and Ub-R-GFP, as well as elevated proteasomal enzyme activity. Interestingly, 4e dramatically accelerated degradation of inducibly-expressed WT and mutant α-syn in PC12 cells, in a UPS dependent manner. Besides, 4e consistently activated PKA in primary neuron and A53T mice brain, restored UPS inhibition and alleviated α-syn accumulation in the A53T mice brain. CONCLUSIONS: 4e is a natural compound derived highly potent PDE4 inhibitor. We revealed its potential effect in promoting UPS activity to degrade pathogenic proteins associated with PD.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Doenças Neurodegenerativas , Doença de Parkinson , Inibidores da Fosfodiesterase 4 , Animais , Neurônios Dopaminérgicos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Inibidores da Fosfodiesterase 4/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ubiquitina/metabolismo , Xantonas , alfa-Sinucleína/metabolismo
2.
Phytomedicine ; 87: 153578, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34038839

RESUMO

BACKGROUND: Parkinson's disease (PD) is one of the most common neurodegenerative motor disorders, and is characterized by the presence of Lewy bodies containing misfolded α-synuclein (α-syn) and by selective degeneration of midbrain dopamine neurons. Studies have shown that upregulation of ubiquitin-proteasome system (UPS) activity promotes the clearance of aggregation-prone proteins such as α-syn and Tau, so as to alleviate the neuropathology of neurodegenerative diseases. PURPOSE: To identify and investigate lycorine as a UPS enhancer able to decrease α-syn in transgenic PD models. METHODS: Dot blot was used to screen α-syn-lowering compounds in an inducible α-syn overexpression cell model. Inducible wild-type (WT) and mutant α-syn-overexpressing PC12 cells, WT α-syn-overexpressing N2a cells and primary cultured neurons from A53T transgenic mice were used to evaluate the effects of lycorine on α-syn degradation in vitro. Heterozygous A53T transgenic mice were used to evaluate the effects of lycorine on α-syn degradation in vivo. mCherry-GFP-LC3 reporter was used to detect autophagy-dependent degradation. Ub-R-GFP and Ub-G76V-GFP reporters were used to detect UPS-dependent degradation. Proteasome activity was detected by fluorogenic substrate Suc-Leu-Leu-Val-Tyr-AMC (Suc-LLVY-AMC). RESULTS: Lycorine significantly promoted clearance of over-expressed WT and mutant α-syn in neuronal cell lines and primary cultured neurons. More importantly, 15 days' intraperitoneal administration of lycorine effectively promoted the degradation of α-syn in the brains of A53T transgenic mice. Mechanistically, lycorine accelerated α-syn degradation by activating cAMP-dependent protein kinase (PKA) to promote proteasome activity. CONCLUSION: Lycorine is a novel α-syn-lowering compound that works through PKA-mediated UPS activation. This ability to lower α-syn implies that lycorine has the potential to be developed as a pharmaceutical for the treatment of neurodegenerative diseases, such as PD, associated with UPS impairment and protein aggregations.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Doença de Parkinson/tratamento farmacológico , Fenantridinas/farmacologia , alfa-Sinucleína/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Células PC12 , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ubiquitina/metabolismo , Regulação para Cima/efeitos dos fármacos , alfa-Sinucleína/genética
3.
Med Sci Monit ; 26: e922070, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32578582

RESUMO

BACKGROUND We aimed to screen and identify central genetic and molecular targets involved in advancement of lung adenocarcinoma (LUAD) and to perform an integrated analysis and clinical validation. MATERIAL AND METHODS The GEO2R technique was utilized to assess differentially expressed genes (DEGs) among the gene sets GSE75037, GSE85716, and GSE118370. Subsequently, gene Ontology (GO) analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) analytical methods were executed to determine related biofunctions and signaling pathways, which were annotated with tools from the Database for Annotation, Visualization and Integrated Discovery (DAVID) resource. Then, a protein-protein interaction (PPI) network complex consisting of all detected DEGs was built with the STRING web interface. Cytohubba and MCODE plug-ins for Cytoscape software and Gene Expression Profiling Interactive Analysis (GEPIA) were employed to identify the hub genes. Finally, the mRNA expression of the identified hub genes was quantitatively validated by The Cancer Genome Atlas (TCGA) database analysis and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS We screened 146 upregulated DEGs and 431 downregulated DEGs with the criteria of |logFC| >1 and P<0.05, and the GO analysis indicated that DEGs were implicated in mitotic nuclear division (biological process, BP), the nucleus (cellular component, CC), and protein binding (molecular function, MF) and were associated with multiple KEGG pathways, such as the p53 signaling pathway in cancer. Then, the top 8 genes that predicted significantly different outcomes in LUAD patients were filtered from the DEGs and selected as hub genes. The TCGA database analysis and RT-qPCR results demonstrated that these genes were differentially expressed with the same trends in LUAD tissues compared with normal tissues. CONCLUSIONS Overall, we propose that 8 genes (PECAM1, CDK1, MKI67, SPP1, TOP2A, CHEK1, CCNB1, and RRM2) might be novel hub genes strongly associated with the progression and prognosis of LUAD.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Perfilação da Expressão Gênica/métodos , Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Ontologia Genética , Humanos , Neoplasias Pulmonares/genética , Análise em Microsséries , Prognóstico , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas/genética , Transdução de Sinais , Transcriptoma/genética
4.
Cell Death Dis ; 11(2): 128, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071296

RESUMO

Autophagy, a conserved cellular degradation and recycling process, can be enhanced by nutrient depletion, oxidative stress or other harmful conditions to maintain cell survival. 6-Hydroxydopamine/ascorbic acid (6-OHDA/AA) is commonly used to induce experimental Parkinson's disease (PD) lesions by causing oxidative damage to dopaminergic neurons. Activation of autophagy has been observed in the 6-OHDA-induced PD models. However, the mechanism and exact role of autophagy activation in 6-OHDA PD model remain inconclusive. In this study, we report that autophagy was triggered via mucolipin 1/calcium/calcineurin/TFEB (transcription factor EB) pathway upon oxidative stress induced by 6-OHDA/AA. Interestingly, overexpression of TFEB alleviated 6-OHDA/AA toxicity. Moreover, autophagy enhancers, Torin1 (an mTOR-dependent TFEB/autophagy enhancer) and curcumin analog C1 (a TFEB-dependent and mTOR-independent autophagy enhancer), significantly rescued 6-OHDA/AA-induced cell death in SH-SY5Y cells, iPSC-derived DA neurons and mice nigral DA neurons. The behavioral abnormality of 6-OHDA/AA-treated mice can also be rescued by Torin 1 or C1 administration. The protective effects of Torin 1 and C1 can be blocked by autophagy inhibitors like chloroquine (CQ) or by knocking down autophagy-related genes TFEB and ATG5. Taken together, this study supports that TFEB-mediated autophagy is a survival mechanism during oxidative stress and pharmacological enhancement of this process is a neuroprotective strategy against oxidative stress-associated PD lesions.


Assuntos
Antiparkinsonianos/farmacologia , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Encéfalo/efeitos dos fármacos , Curcumina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Naftiridinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Ácido Ascórbico , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Curcumina/análogos & derivados , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Humanos , Camundongos Endogâmicos C57BL , Mitofagia/efeitos dos fármacos , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
5.
Phytomedicine ; 61: 152842, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31048127

RESUMO

BACKGROUND: Parkinson's disease (PD) is an age-dependent progressive movement disorder characterized by a profound and selective loss of nigrostriatal dopaminergic neurons. Accumulation of -synuclein (-syn) positive protein aggregates in the substantia nigra is a pathological hallmark of PD, indicating that protein turnover defect is implicated in PD pathogenesis. PURPOSE: This study aims to identify neuroprotective compounds which can alleviate the accumulation of -syn in neuronal cells and dissect the underlying mechanisms. METHODS: High throughput screening was performed by dot blot assay. The degradation of different forms of -syn by candidate compounds were assessed by western blot. The autophagy lysosome pathway and ubiquitin-proteasome system were examined to dissect the degradation pathway. The UPS activity was assessed by cellular UPS substrates degradation assay and biochemical proteasome activity assay. Q-PCR was performed to test the mRNA level of different proteasome subunits. Furthermore, Neuroprotective effect of candidate compound was tested by LDH assay and PI staining. RESULTS: Through the high throughput screening, harmine was identified as a potent -syn lowering compound. The time-dependent and dose-dependent effects of harmine on the degradation of different forms of -syn were further confirmed. Harmine could dramatically promote the degradation of UPS substrates GFP-CL1, Ub-R-GFP and Ub-G76V-GFP, and activate cellular proteasome activity. Mechanistically, harmine dramatically enhanced PKA phosphorylation to enhance proteasome subunit PSMD1 expression. PKA inhibitor blocked the effects of harmine in activating UPS, up regulating PSMD1 and promoting -syn degradation, indicating that harmine enhances UPS function via PKA activation. Moreover, harmine efficiently rescued cell death induced by over-expression of -syn, via UPS-dependent manner. CONCLUSION: Harmine, as a new proteasome enhancer, may have potential to be developed into therapeutic agent against neurodegenerative diseases associated with UPS dysfunction and aberrant proteins accumulation.


Assuntos
Harmina/farmacologia , Neurônios/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , alfa-Sinucleína/metabolismo , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Camundongos Transgênicos , Neurônios/metabolismo , Células PC12 , Fosforilação/efeitos dos fármacos , Ratos , alfa-Sinucleína/genética
6.
Carbohydr Polym ; 215: 99-107, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981376

RESUMO

Suaeda salsa, is an annual herbaceous plant that contains various bio-functional macromolecules. Herein, an acidic polysaccharide from Suaeda salsa, denoted as SSP2-2, with a molecular weight of 53.8 kDa was isolated, which composed of mannose, rhamnose, glucuronic acid, galacturonic acid, galactose and xylose in a molar ratio of 0.6: 8.0: 1.0: 83.6: 5.0: 7.2. An MTT assay showed that SSP2-2 induced apoptosis of MCF-7 cells in a dose-dependent manner in vitro. Morphological analysis and flow cytometry experiments indicated that SSP2-2 promotes MCF-7 cells death via apoptosis, while JC-1 staining results revealed that mitochondrial membrane potential was reduced in a dose-dependent manner. The data from the western blot showed an increase in the levels of Bax, cytochrome C (Cyto-c), caspase-3 and caspase-9 and a decrease in the level of Bcl-2 further demonstrated that SSP2-2 could induce apoptosis via a mitochondrial pathway. These results suggest that SSP2-2 can potentially be used as an antitumor agent.


Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Chenopodiaceae/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Polissacarídeos , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Citocromos c/metabolismo , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
7.
Oncotarget ; 8(44): 77673-77684, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100416

RESUMO

Autophagy is a cellular bulk degradation pathway implicated in various diseases. Inhibition of autophagy has been regarded as a new therapeutic strategy for cancer treatment, especially in combination with chemotherapy. In our study, we identified two natural compounds, dauricine (DAC) and daurisoline (DAS), as two potent autophagy blockers through a high-content screening. DAC and DAS are alkaloids isolated from traditional Chinese medicine Rhizoma Menispermi. We systematically examined the effects of DAC and DAS on autophagy function in HeLa cells and found that DAC and DAS induced massive formation of autophagic vacuoles and lipidation of LC3. The accumulation of autophagic vacuoles and LC3 lipidation are due to blockage of autophagosome maturation as evidenced by interrupted colocalization of autophagsosome and lysosome, increased GFP-LC3/RFP-LC3 ratio and accumulation of autophagic substrate p62. Moreover, DAC and DAS impaired lysosomal function, as indicated by reduced lysosomal protease activity and increased lysosomal pH values. Importantly, we showed that DAC and DAS strongly inhibited the lysosome V-type ATPase activity. For the therapeutic potential, we found that DAC and DAS blocked the campothecin (CPT)-induced protective autophagy in HeLa cells, and dramatically sensitized the multiple cancer cells to CPT-induced cell death. In conclusion, our result shows that DAC and DAS are autophagy inhibitors which inhibit the lysosomal degradation of auophagic vacuoles, and sensitize the CPT-induced cancer cell death. The study implies the therapeutic potential of DAC and DAS in the treatment of cancers in combination of chemotherapy by inhibiting autophagy.

8.
Sci Rep ; 7(1): 8398, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827552

RESUMO

6-OHDA plus ascorbic acid (AA) has long been used to induce Parkinson's disease in rodents, while only 6-OHDA is commonly used to induce cell damage in cellular PD models. AA was believed to act as an anti-oxidant to prevent the degradation of 6-OHDA; however, some studies suggested that AA dramatically enhanced the selectivity and toxicity of 6-OHDA. To understand the mechanisms by which 6-OHDA/AA induces cell death, we established a 6-OHDA/AA cell toxicity model in human dopaminergic neuroblastoma SH-SY5Y cells. We confirmed that the toxicity of 6-OHDA was dramatically increased in the presence of AA, and the toxicity can be prevented by a flavonoid, baicalein. Mechanistically, our research reveals that 6-OHDA/AA induces cell death mainly through the interruption of intracellular calcium homeostasis, which leads to calpain activation and mitochondrial damage. Baicalein prevents 6-OHDA/AA-induced intracellular calcium elevation as well as consequent mitochondria damage. Taken together, our study confirms that 6-OHDA/AA is a more sensitive model for inducing neuronal lesion in vitro and reveals the central role of intracellular calcium in 6-OHDA/AA-induced cell death. Our studies further show that baicalein prevents 6-OHDA/AA-induced cell death by inhibiting intracellular calcium elevation.


Assuntos
Adrenérgicos/toxicidade , Ácido Ascórbico/toxicidade , Hormônios e Agentes Reguladores de Cálcio/toxicidade , Morte Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Flavanonas/metabolismo , Oxidopamina/toxicidade , Cálcio/metabolismo , Calpaína/metabolismo , Linhagem Celular , Neurônios Dopaminérgicos/fisiologia , Homeostase , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
9.
J Ethnopharmacol ; 194: 861-876, 2016 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-27793785

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM), an ancient yet still alive medicinal system widely used in East Asia, has played an essential role in health maintenance and diseases control, for a wide range of human chronic diseases like cancers and neurodegenerative diseases. TCM-derived compounds and extracts attract wide attention for their potential application as therapeutic agents against above mentioned diseases. AIM OF REVIEW: Recent years the enthusiasm in searching for autophagy regulators for human diseases has yielded many positive hits. TCM-derived compounds as important sources for drug discovery have been widely tested in different models for autophagy modulation. Here we summarize the current progress in the discovery of natural autophagy regulators from TCM for the therapeutic application in cancer and neurodegenerative disease models, aiming to provide the direct link from traditional use to new pharmacological application. METHODS: The present review collected the literature published during the recent 10 years which studied the effect of TCM-derived compounds or extracts on autophagy regulation from PubMed, Web of Science, Google Scholar and Science Direct. The names of chemical compounds studied in this article are corresponding to the information in journal plant list. RESULTS: In this review, we give a brief introduction about the autophagy and its roles in cancer and neurodegenerative disease models and describe the molecular mechanisms of autophagy modulation. We also make comprehensive lists to summarize the effects and underlying mechanisms of TCM-derived autophagy regulators in cancer and neurodegenerative disease models. In the end of the review, we discuss the current strategies, problems and future direction for TCM-derived autophagy regulators in the treatment of human diseases. CONCLUSIONS: A number of data from in vivo and in vitro models indicated TCM derived compounds and extracts hold great potential for the treatment of human diseases including cancers and neurodegenerative diseases. Autophagy, as a novel and promising drug target involved in a wide range of human diseases, can be modulated by many TCM derived agents, indicating autophagy modulation may be an important mechanism underlying the therapeutic effect of TCM in treating diseases. Furthermore, we look forward to seeing the discovery of ideal autophagy modulators from TCM with considerably higher selectivity for the treatment of human diseases.


Assuntos
Autofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Etnofarmacologia/métodos , Humanos , Medicina Tradicional Chinesa/métodos , Fitoterapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA